DEVELOPMENT OF AN OLDER OCCUPANT FE MODEL INCORPORATING GEOMETRY, MATERIAL PROPERTIES, AND CORTICAL THICKNESS VARIATION

Ashley Weaver, Samantha Schoell, Jillian Urban, Sarah Lynch, Derek Jones, Elizabeth Lillie, Joel Stitzel *Wake Forest University School of Medicine*

Collaborators: Eunjoo Hwang, Katelyn Klein, Jonathan Rupp, Matthew Reed, Jingwen Hu *UMTRI*

Wake Forest[™] School of Medicine

Motivation

Elderly population is growing
Increased fragility and frailty

Global Human Body Models Consortium

 Develop & maintain high biofidelic FE human body models for crash simulation

- Representative of a 50th percentile male (M50)
- Based on medical images of a 26 YO & literature data

Objective: Develop an older occupant GHBMC model representing a 65 year old 50th percentile male

Characterize Shape, Material Property, Cortical Thickness

Understand agespecific injury mechanisms

Overview of 65 YO Model

Overview of 65 YO Model

Golman 2014; Kemper 2005; Kemper 2007; Dokko 2009; El-Jawahri 2010

Overview of 65 YO Model

Research Plan

Scan and landmark collection

CT and MRI Scans

Model Parameters

Shape landmark data Material properties Cortical thickness FE analysis & parametric simulation

Scan Collection

- 343 Thoracic CTs, 120 MRIs, 120 Head CTs
- Demographic data: sex, age, weight, height, BMI

ICBM Labels

Segmentation Methods

Soft Tissue

Fully – automated brain label segmentation

Bone

- 1. Bone Threshold
- 2. Region grow
- 3. Manual edit
- 4. Hole filling

Homologous Landmark Collection

Registration of Atlas Landmarks to Subject Segmentations

Geometric Morphometrics

Rib Cage Shape Changes (Males) -

Weaver et al. (J Anatomy 2014), Weaver et al. (J Morphology 2014)

020.00 years

UMTRI Mesh Morphing

Femur

External Anthropometry

UMTRI M50 Body Shape (Future: implement age effect)

Thin-Plate Spline Interpolation Model Morphing

"Thin-plate spline" refers to a physical analogy involving the bending of a thin sheet of metal

Thin-Plate Spline Interpolation Model Morphing

Preliminary Morphing Results

GHBMC 65yr Male

65YO Material Properties

- Adapted from literature
- Ultimate strain of the ribs and ultimate stress of the femur cortical bone decreases significantly with age

Golman 2014; Kemper 2005; Kemper 2007; Dokko 2009; El-Jawahri 2010

Cortical Thickness Estimation Treece et al. 2010, 2012

- 1. Computes HU value (density) from entire CT scan that best represents cortex
- 2. Algorithm uses density value to estimate cortical thickness over entire surface

Outputs point cloud with associated cortical thickness values at each point

Rib Cortical Thickness Variation with Age

Rib:5, Ring:5, Angle:266

Rib Cortical Thickness Comparison

GHBMC

Fringe Levels (mm) 1.93 1.77 1.61 1.45 1.29 -1.13 0.96 -0.80 -0.64 0.49 0.32

65yr Male

Skull Cortical Thickness Variation

Lillie et al. (J Anatomy 2015)

Skull Cortical Thickness Comparison

Femur Cortical Thickness Comparison GHBMC

65yr Male

Ongoing Work

- Characterize 65YO pelvis, tibia, & external anthropometry variation
- Morph full body
- Implement 65YO material properties & cortical thicknesses
- Simulation & validation

Ongoing Work

- Characterize 65YO pelvis, tibia, & external anthropometry variation
- Morph full body
- Implement 65YO material properties & cortical thicknesses
- Simulation & validation

Summary & Conclusions

- 65 YO GHBMC model development
 - Shape variation in brain, skull, thorax, lower extremities, and external anthropometry
 - Bone material property variation
 - Cortical thickness variation (skull, ribs, lower extremity)
- Investigating age-specific injury mechanisms

Center for Injury Biomechanics

Thank you!

OASIS Project for MRI scans P50 AG05681, P01 AG03991, R01 AG021910, P20 MH071616, U24 RR021382

Center for Injury Biomechanics

