Compatibility Research Plan

December 5, 2005

David Smith Structures and Restraints Research Division NHTSA Research

Objective and Scope

- Objective: To lay the basis for a decision on near term rulemaking.
- Scope: Offset and compatibility research programs support one another, compatibility is focused on full frontal.
 - An offset test for occupant compartment stiffness to reduce lower extremity injuries.
 - A Compatibility test for matching frontal structure stiffness and height of forces to reduce all injuries. Good design for full frontal is good design for offset compatibility.

The Metrics of Compatibility

- Initial stiffness, Ks
 - Initial slope of the force-deflection curve from NCAP tests over about 200 mm of crush (Kahane, 2003)
- Work stiffness, Kw
 - Area under the force-deflection curve from NCAP tests, hence work or energy absorbed.
 - More reliable, less design restrictive than Ks.
 - Kw400 = during first 400 mm of crush.
- Average Height of Force
 - Height of force averaged over the crush.
 - AHOF400 = during first 400 mm of crush.

Height of Force versus Weight for MY 00-05

Preliminary AHOF400 & Kw400 Matching in CDS

(Combined offset and full frontal, belted car drivers only)

Car AHOF	Other AHOF	Car Stiffness	Other Stiffness	AIS 3+ Prob. Inj.	AIS 2+ Prob. Inj.	Cases
Med.	Med.	Low	Low	1.1%	2.4%	31
Med.	Med.	Low	Med.	9.2%	19.4%	23
Med.	Med.	Med.	Low	16.5%	18.9%	12
Med.	Med.	Med.	Med.	1.9%	6.8%	12
Med.	High	Low	High	4.0%	74.2%	11

Cars Before and After the IIHS Offset Test

LTVs Before and After the IIHS Offset Test

Next Steps in Analytical Work

- Additional analyses of CDS data to better understand injury outcomes for Kw and AHOF.
- Analyses of FARS data to better understand fatality outcomes for Kw and AHOF.
- Analyses of crashes with objects for Kw and AHOF.
- Optimization study to select Kw limits.
- CDS case study and CIREN analyses to better understand injury patterns.

Vehicle Testing Approach Full Frontal Collinear

- 1. IPT test series called for in the IPT Report, 6/03.
 - Initial stiffness, Ks, matched pairs.
 - Work stiffness, Kw, matched pairs to match energy absorption.
- 2. Begin to compare various frontal constructions
 - Option 1 LTVs Body on frame, Advanced Compatibility Engineering (ACE), and Unibody structures.
 - Option 2 LTVs Secondary Energy Absorbing Structure (SEAS) to engage cars.
- 3. High Resolution Rigid Barrier (HRRB) Tests

Ks Matching Results

- Vehicles matched AHOF. LTV weights were ballasted to match.
 - 03 Silverado, Ks = 2541 N/mm, aggressive.
 - 05 Town&Country, Ks = 1244 N/mm, compatible.

• 02 Focus, Ks = 1304 N/mm.

- High test speeds were chosen to show relation of injury to structural matches, Focus deltaV = 45 mph.
- Crash tests showed a significant improvement (10 20%) in the risk of serious injury with matched height and low initial stiffness.
- Improvement was seen in both the LTV and passenger car.

Kw Matching Approach

• Same test conditions as the Ks series to compare results.

	K _w 400 Work Stiffness	AHOF400 Height of Force	W Weight
03 Silverado	2019 N/mm	470 mm	2359 Kg
05 T&C	1469 N/mm	477 mm	2229 Kg (Ballast to Silverado 2359)
01 Civic 2 Dr Coupe	1433 N/mm	415 mm	1335 Kg (Ballast to Focus 1410 kg)

Begin to Compare Frontal Constructions, vehicle-vehicle tests

- Same test conditions as previously (mass, speed, target) and compare injury outcomes.
- ACE structure MY03/05 Honda Odyssey before and after ACE against 02 Focus.
- Unibody structure MY05 Honda Ridgeline against 02 Focus.
- SEAS structure MY06 F-250 with and without SEAS against 02 Focus.

Begin to Compare Frontal Structures – High Resolution Rigid Barrier (HRRB) Tests

To get more accurate data for the test design metrics and better understand the vehicle-vehicle crash test results

- 02 Focus
- 01 Civic 2 Dr coupe
- 03 Silverado
- 05 Town and Country
- 03 Odyssey (without ACE)
- 05 Odyssey (with ACE)
- 05 Ridgeline
- 06 F-250 (with SEAS)

Perform a Progressive Deformable Barrier (PDB) Test Series

Memo of Cooperation with the French signed in 2004.

- > Tests now being co-designed with the French, and co-funded.
- Selected LTVs to match our vehicle-vehicle IPT test series, 03 Silverado and 05 Town and Country.
- Evaluate how well the barrier distinguishes between the two frontal structures - one aggressive, the other compatible.

Dynamic Test Approach

- Rigid barrier 208 approach is the best near term option.
 - Self protection comes from 208 and NCAP.
 - Partner protection comes from Kw400 and AHOF400 measured during 208 tests at 35 mph. (cases of concern car-car, Opt.1 LTV-car, LTV-LTV)
 - Barrier instrumentation will be designed using an 04 earmark to GWU/NCAC and finite element analysis.
- A new rigid barrier will be needed for the new Option 2 LTVs to ensure SEAS compatibility with passenger cars.
 - Alliance override rigid barrier (ORB)

ORB Tests and the SEAS

- The Alliance override rigid barrier extends out from the rigid wall about 1.2 m and upward to engage the SEAS.
 - Force height and energy absorption need to be evaluated to ensure car compatibility.
- An override barrier will be fabricated at VRTC for test and evaluation.
 - Load cell dimensions and metrics will be developed.
 - Tests on the Ridgeline and F-250 will be conducted.

Advanced Technology for Compatibility

- Investigate crash mitigation systems.
 - Perhaps automatic braking to bleed LTV energy, realtime ride height adjustments, real-time stiffness adjustments, belt and bag preparations, others.
 - Identify the most promising protection system(s) and prototype them.
 - Develop objective tests and preliminary benefits.
- Parallel research with Volpe to develop a preliminary benefits methodology that can bridge the gap between these crashworthiness systems and crash avoidance benefits.

Summary

- All work will be started in FY2006.
- Some work will extend beyond FY2006.
 - The GWU 2004 earmark joint with FHWA on F-250 modeling and SEAS virtual testing extends into 2007.
 The advanced technology research goes till 2009.
- More research may be needed if the results show continued promise.
- A milestone in Q4 of FY2006 exists to brief the results of this plan. A new plan will be proposed at that time, if needed.