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Executive Summary 

 This field study used an innovative large-scale data collection technique to gather information 
about how crash avoidance systems operate in the field and how drivers respond to them. Although the 
specific systems studied were the General Motors (GM) camera-based forward collision alert (FCA) and 
lane departure warning (LDW) systems, this technique could be readily applied to other emerging active 
safety systems and used to better inform emerging active safety consumer metrics. It should be noted 
that both the FCA and LDW systems evaluated have consistently met NHTSA’s Crash Avoidance New Car 
Assessment Program (CA NCAP) performance criteria since this program was initiated. 

The telematics-based data collection technique employed harnessed the unique and powerful 
telematics capabilities of OnStar coupled with a production crash avoidance module (i.e., the front 
camera module) that was specifically designed to support the type of active safety system data 
collection described in this paper focused on gathering key, high-priority numeric data. In this study, 
1,958 consenting owners of model year 2013 Chevrolet Equinox, Cadillac SRX, and Cadillac XTS vehicles 
equipped with the FCA and LDW systems provided data on alert events and driving exposure over the 
course of about a year. Beyond the sheer amount of active safety system data collected, the geographic 
span of the data collected via this remote data collection approach was also unprecedented, as vehicles 
from 48 of the 50 States were represented in this effort.  

Data analysis was enhanced using existing highly detailed field operational test data (e.g., 
forward looking video) at UMTRI. Thus, targeted, large-sample data collection, combined with 
information from highly detailed data, were used together to develop an efficient way to understand 
the performance of two active safety systems currently included in NHTSA’s CA NCAP Program.  

 Two general types of data were collected in the current study: (1) “snapshots” of kinematic and 
other variables 3 to 6 seconds before, at, and 4 seconds after either FCA imminent crash or LDW alert 
events, and (2) histograms of driving data to provide information about exposure and normal driving. In 
addition, the time of braking onset after the alert (within 4 seconds of the alert) was recorded. Overall, 
these data were used to answer questions in several broad research categories: system availability, alert 
rates, driver acceptance (e.g., on/off setting choices), driver response to alerts, and driver adaptation 
over time.  

 Data analysis was enhanced by using highly detailed “traditional” field operational test  data 
previously gathered by UMTRI, as part of the NHTSA-sponsored Advanced Collision Avoidance Study 
(ACAS) field operational test and Federal Highway Administration -sponsored Safety Pilot efforts. These 
data provided an extensive set of multi-channel video and continuously measured kinematic 
information, which was coupled with the current targeted, large-sample data collection, to develop an 
entirely new and efficient way to understand the field performance of two active safety systems. These 
previous FOT datasets were invaluable in developing some key algorithms to aid in understanding the 
data patterns observed with the more limited numeric data gathered in the present study.  

 Based on work conducted under the ACAS FOT, FCA imminent alerts were classified into 
scenarios to better understand system performance and driver behavior. We developed seven scenarios 
based on our determination using the available data of whether the lead vehicle (LV) stayed in path 4 
seconds after the alert, the longitudinal movement state of the LV, and whether the host vehicle (HV) 
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steered or not. The seven scenarios, as well as the estimated corresponding percentages of FCA 
imminent alerts observed in each of these scenarios, which total up to 100 percent, are shown below. 

1. Approaching slowing vehicle (19% of alerts) 
2. Approaching stopped vehicle (0.4%) 
3. Approaching slower or accelerating vehicle (31%) 
4. Oncoming traffic (considered out-of-path false alerts) (2%) 
5. Target dropped - host changes lanes (11%) 
6. Target dropped - host stays in lane (16%) 
7. Target dropped - host lane unknown (20%) 

 These scenario classification definitions were used throughout FCA analysis to understand context 
surrounding FCA imminent alerts. The first two scenarios shown above are considered key scenarios for 
preventing rear-end crashes (though it should noted that the second “Lead Vehicle Stopped” scenario 
rarely occurred). The remaining scenarios can typically be resolved with minimal driver response. At a high 
level, observed driver responses were consistent with expected responses for these scenarios (e.g., higher 
decelerations were observed when approaching a slowing or stopped vehicle). 

 The availability of the systems were evaluated as a portion of the time the system would be 
expected to be available based on the LDW (above 35 mph) and FCA (above 25 mph) minimum 
operating speeds. LDW system availability was primarily driven by lane confidence, whereas FCA system 
availability above was primarily driven by the presence of a detected lead vehicle. Based on system-
determined reasons for unavailability, weather and poor visibility occurred substantially less than 1 
percent of the driving time. 

 Driver behavior surrounding alerts was investigated in several ways. The on/off setting choice 
can be thought of as the most fundamental and primary measure of driver acceptance, which interacted 
in important ways with the alert type setting. For both LDW and FCA, the Cadillac SRX and Cadillac XTS 
drivers had the option of choosing between warning beeps or haptic seat vibration pulses (referred to 
by GM as the safety alert seat), which applied to both systems.  

Cadillac drivers selected the safety alert seat (over beeps) 90 percent of the time, and when the 
haptic seat was turned on, the LDW system off time was 38 percent. For Chevrolet Equinox drivers, who 
only had the beeps option, the corresponding LDW off time nearly doubled increasing to 71 percent. 
More generally, the LDW Off time increased until leveling off at about 10,000 miles (approximately one 
year of driving). At that point, drivers generally settled on whether they left the system on or off. Drivers 
who drove more miles per month (1 sd above the mean monthly mileage) also had over 40 percent 
greater odds of system deactivation. In addition, Equinox drivers who spent more time driving over the 
right lane boundary or who drove more in the 35- to 55 mph speed range tended to turn the system off 
more.  

 For FCA, there were four setting choices (far, medium, and near alert timing, as well as an off 
setting). Overall, system off time was considerably lower for FCA than LDW, and alert type impacted off 
time in a similar fashion. When the safety alert seat was selected (rather than beeps) by Cadillac drivers, 
FCA system off time was 6 percent. For Equinox drivers (who only had beeps option), the corresponding 
FCA off time nearly tripled to 17 percent. Together with the LDW results reported above, these results 
clearly suggest the safety alert seat increases driver acceptance of both LDW and FCA systems, which is 
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further supported by the increased use of the FCA Far alert time setting for Cadillac safety alert users 
(72%) relative to Equinox (49%) beeps users. The Far setting was the most common setting observed 
across vehicles, followed by medium and then near. In general, drivers started out using the Far setting, 
explored other settings (generally from 5,000-25,000 miles), and then returned to the Far setting. Use of 
the off setting also decreased with age. 

 Driver response to FCA imminent alerts was measured in three ways. First, PABT was defined as 
the time between the alert and initial brake onset for cases where the driver’s foot was on the accelerator 
at the time of the alert (eliminating PABTs either below 0.4 sec or above 3 seconds). Second, using these 
same cases, average deceleration was defined as the speed reduction between the alert and 4 seconds 
after the alert, divided by the 4-second time interval. A third driver response measure focused on non-
response, defined as the lack of any braking occurring between 0.4 and 3 seconds after the alert. These 
driver response measures were evaluated as a function of odometer (experience/time) and FCA scenario, 
and additional analysis focused on addressing the two key FCA in-path scenarios (e.g., lead vehicle slowing 
or stopped), where substantially higher decelerations were observed (discussed further below).  

 PABT was affected by a number of factors, with FCA setting, following distance at alert, weather 
(wiper on/off), time of day (day/night), speed at alert, and having the most significant effects. Drivers 
were 0.11 s slower with the system Off compared to Far (which used the same alerting algorithm to 
record phantom alerts not presented to the driver). The corresponding difference was 0.07 s for the two 
key in-path FCA scenarios. For context, a vehicle travels about 1 foot per 10 mph in 0.07 s (e.g., 7 ft at 70 
mph, 6 ft at 60 mph). Responses were about 0.13 s slower for every 10 mph increase in speed at alert 
and about 0.05 s slower for every 10 m increase in following distance at alert. In poor weather 
conditions (wipers on), responses were 0.07 s slower to all scenarios and 0.11 s slower in the two key 
scenarios, compared to when wipers were off. The effect did not vary by time of day (night versus day). 
Thus, in conditions of poorer visibility, braking responses were slower.  

 For driver braking (average deceleration) levels following an alert, alert scenario was the 
strongest predictor. Although this scenario effect interacted with both following distance and vehicle 
speed, in general, the two key in-path alert scenarios resulted in much greater deceleration (averaging 
approximately 2.0 m/s2 or 0.20g) than the remaining scenarios (averaging below 0.5 m/s2 or 0.05g). For 
these scenarios, setting was a significant predictor of average deceleration, but observed differences 
were a relatively small 0.2 m/s2 between settings. Consistent with the observed PABT data, poor 
visibility (having the wipers on) led to stronger average decelerations (0.12 m/s2 higher). For the lead 
vehicle stopped FCA scenario, every 10 mph increase in speed at alert resulted in 2.6 m/s2 higher 
average deceleration levels, whereas for the LV braking scenario, every 10 mph increase in speed at 
alert resulted in 0.13 m/s2 higher average deceleration levels.  

 Driver non-response levels are shown below for the FCA scenarios identified: 

1. Approaching slowing vehicle (19%) 
2. Approaching stopped vehicle (24%) 
3. Approaching vehicle moving at slower (but not braking) or accelerating (54%) 
4. Oncoming traffic (considered out-of-path false alerts) (66%) 
5. Remaining scenarios (target lost after 4 sec) (81%) 
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 Thus, the driver non-response levels were highest for conditions in which the lead vehicle was 
estimated to be not present 4 seconds after the alert, or when present but accelerating at the 4 sec 
post-alert time. In some cases of non-response for these two conditions, the driver may have coasted 
rather than braking to manage the situation. 

 Overall, system alert rates were higher when the system was off relative to a matched system-
on condition (i.e., for LDW the On setting, for FCA the Far alert timing setting), and LDW alerts occurred 
markedly more often than either FCA headway or FCA imminent alerts. Median LDW alert, FCA headway 
alert, and FCA imminent alert rates (per 100 miles) were 29 percent, 18 percent, and 19 percent higher 
when the crash avoidance system was OFF rather than ON. Median LDW alert rates for the On and Off 
setting were 37.4 and 48.4 per 100 miles respectively. Median FCA headway alert rates for the Off, Far, 
Medium, and Near settings were 9.6, 8.1, 2.4, and 0.17 per 100 miles respectively. Median FCA 
imminent alert rates for the Off, Far, Medium, and Near settings were 1.3, 1.1, 0.75, and 0.54 per 100 
miles respectively. (Note that the pattern of decreasing FCA alert rates as alert timing increases from 
Near to Far setting is expected based on the FCA alert timing algorithms.)  

 Relative to previous traditional active safety FOT efforts, one of the particular strengths of this 
study was the ability to look at changes in data patterns over a considerably longer period (e.g., about 1 
year instead of 6 weeks) for a larger sample of drivers (e.g., 2,000 instead of 100). Overall, there was no 
substantial evidence of unintended consequences due to driver adaptation. As odometer (and hence 
time) increased, whether or not the system was turned on, alerts rates went up for LDW and down for 
FCA, with the FCA reduction dependent on the estimated FCA scenarios. As would be expected, 
oncoming vehicle (out-of-path) alert rates did not change over time, since these alerts are largely out of 
the driver’s control. In contrast, alerts to lead vehicles that are accelerating or stopped, and alerts where 
the lead vehicle was lost but the host vehicle did not change lanes or the driver’s lane position was 
unknown decreased the most. These could be argued to be scenarios that the driver can anticipate and 
perhaps can adapt to avoid setting off the FCA. In the two key in-path FCA scenarios described above 
(where a lead vehicle remaining present), alert rates decreased somewhat as odometer increased.  

 Finally, changes in normal driving behavior over time (odometer) was examined in terms of 
following distance and time spent over the left lane and right lane boundaries. Overall, drivers who 
started with more extreme following distances (short or long, relative to other drivers) or percent of 
time spent over either lane boundary tended to become more like an average driver over time. This 
suggests an effect of getting used to the vehicle rather than an effect of the system itself.  

 In summary, this new telematics-based, large-scale OnStar data collection technique has several 
distinct strengths for evaluating active safety systems, including cost, sample size, drivers using their 
own vehicles where they can turn systems off, ability to look at long-term effects, data efficiency, and 
the ability to get “rapid-turnaround” large-scale results. Since this technique currently focuses on key 
high-priority numeric data, it complements and benefits from the extensive set of multi-channel video 
and continuously measured kinematic information gathered in traditional FOTs. This new type of 
telematics-based data collection appears ideally suited for understanding the safety impacts of active 
safety (crash avoidance) systems that are rapidly emerging globally.  
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Introduction 

 In the last decade, there has been a dramatic increase in automotive production active safety 
systems using external-looking radar, camera, and/or ultrasonic sensors intended to help drivers avoid 
crashes (or reduce crash impacts), rather than protect occupants in the event of a crash. While some 
systems, such as electronic stability control actively intervene in vehicle control, many systems assist the 
driver with the vigilance task that is fundamental to safe driving. These systems present warnings to the 
driver when the vehicle kinematics or position meet certain criteria that could indicate a developing 
unsafe crash situation. Furthermore, some of these emerging active safety systems are now part of 
NHTSA’s New Car Assessment Program. This provides further motivation to better understand system 
field performance to support consumer metrics. 

 Two such warning-based driver assistance systems are FCW and LDW. (GM refers to the former 
system as forward collision alert, FCA). FCA warns drivers when they closing too fast on vehicles ahead 
or if they are following much too closely (tailgating). LDW warns the driver when the vehicle drifts across 
a lane boundary without a turn signal. Both these systems are included in the NCAP program, which 
includes associated system performance requirements (e.g., alert timing requirements). FCW and LDW 
systems have been studied in multiple field operational tests such as the Advanced Crash Avoidance 
System study (Ervin et al., 2005) and the Safety Pilot study. 

 The Integrated Vehicle-Based Safety Systems (IVBSS) study involved extensive collection of data, 
including video and detailed kinematics, from 108 drivers of a fleet of FCA- and LDW-equipped test 
vehicles. Each driver drove for 6 weeks (2 weeks without the active safety systems and 4 weeks with the 
systems on). The study was groundbreaking in its early look at the promise of multiple integrated crash 
avoidance systems. For the crash-reduction analysis with IVBSS, the target crash types included rear-end 
collisions, lane/road departures, lane change/merge crashes, and crashes initiated by loss of control in a 
curve. Analysis of the conflict data showed that there were 33 percent fewer lane-change conflicts and 
19 percent fewer road-departure near-events. Relating these changes in conflicts to crashes, Volpe 
estimated that the set of collision avoidance technologies evaluated in the IVBSS study would reduce 
target crash types between 6 percent and 29 percent (Nodine, Lam et al. 2011). 

 FOTs are relatively expensive to conduct, and thus, there are limitations on sample size and 
duration of testing. As each new active safety system approaches the market, it will be increasingly 
challenging to use the traditional FOT paradigm as the primary means of evaluation. This report 
describes a complementary and possibly alternative approach to collect data on such systems and 
drivers’ behavior in response to those systems on a large scale for a more affordable cost. This approach 
could be used to inform decision-making with respect to active-safety-related consumer metrics and 
regulations, such as NCAP. 

 This paper describes a distinct alternative approach to a traditional FOT, but which also 
leverages existing traditional FOT data to aid in a more complete interpretation of data collected. This 
approach is designed to make use of a carefully selected set of high-priority information about alerts 
and normal driving behavior for a large sample of drivers of production crash avoidance system-
equipped vehicles during long-term usage (approximately 1 year). Data was captured through a 
telematics-based (OnStar) method, and the approach traded data detail (e.g., multi-channel video 
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gathered in traditional FOTs) for sample size, length of study, and drivers’ natural behavior in their own 
purchased vehicles. For example, the telematics data collection approach employed in the current study 
did not include image or video data. 

 Two general types of data were collected in this study from vehicles whose owners consented to 
participate. Exposure-based data for each trip such as miles driven, driving time, and histograms of key 
variables such as speed and number of alerts, succinctly describe characteristics of each trip and provide 
a description of the typical driving done in each vehicle. On the other hand, alert-based snapshot data 
are triggered by FCA and LDW alert events. For each alert, key data elements are collected at one point 
in time before the alert, at the time of the alert, and after the alert. This gives three snapshots of the 
kinematics of the event over a large number of events. Alert-triggered data can be used to understand 
alert rates, driver response immediately following alerts, and changes in these measures and driver 
behavior over time (adaptation). In addition, alert conditions can be compared to normal driving to 
understand how unusual alert circumstances are in the course of normal driving.  

 A key element of this data-collection approach is the efficiency of the information collection, 
focusing only on key, high-priority data. This efficiency allows the data to be transmitted using 
telematics (in this case OnStar), rather than capturing it on a hard drive in the vehicle and having 
vehicles return to a specific location for periodic downloads (or for researchers to travel to the test 
vehicle). Using OnStar’s unique and powerful data collection capabilities, data can be gathered remotely 
across a wide geographic span, and data from large samples do not take up large amounts of storage 
space. In the future, this method may not necessarily require OnStar or production code. Third-party 
telematics devices are available that could be customized, installed in drivers’ vehicles, and used in place 
of implementing production code and OnStar. However, the third-party approach would still need an 
OEM’s assistance, may not have access to all the key signals, and would likely be more costly because it 
could not take advantage of the existing scale and operations of OnStar. 

 Because the telematics data collection approach does not currently include image or video data, 
other existing datasets were used to enhance understanding of the “image-less” data analyzed in this 
study. For example, the Safety Pilot data (mentioned earlier) can be used to develop algorithms that link 
video-confirmed “ground truth” with the kinematic data available in the current study. This expands our 
ability to understand what the patterns in the substantially larger targeted dataset represent. 

 In summary, this study was designed to look at a large sample of GM FCA- and LDW-equipped 
production vehicles to better understand the performance of these systems in the field using a large-
scale, innovative OnStar (telematics-based) data collection approach. During the course of the study, 
methods of analysis were developed that were tailored to analyze key high-priority data, and these 
methods should prove useful in similar large-scale data collection efforts. The primary focus of the study 
was to answer a set of research questions described in the following section. 

Main Study Areas to Be Addressed 

 Broadly, this study was designed to address field performance of crash avoidance systems in 
terms of system performance, driver response and driver acceptance (e.g., On/Off system choices). To 
support the goals of this effort, both exposure- and alert-based data were recorded, even if the systems 
were turned off by the driver. (Note this latter Off option is not available to drivers in traditional FOTs). 
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Areas of study are divided into questions about the system and questions about the driver, but it should 
be noted that these are not independent.   

System Behavior 
 System behavior in this study can be characterized as a combination of system performance, 
and the types of conditions the system is exposed to by real-world drivers. The types of questions about 
system behavior to be addressed include: 

• Conditions (e.g., wipers on versus off, light/dark) under which the system is 
available/unavailable, 

• Estimated system-false alert rates (such as no actual target present), 
• Alert scenario (conditions under which alerts occur, such as vehicle speeds), and 
• System performance by setting (On/Off, FCA alert timing, and alert type) 

Driver Behavior 
 Driver behavior in this study will be assessed through histograms of exposure-based data (e.g., 
speed, time headway, and system setting) and through event-based data triggered by FCA imminent and 
LDW alerts. Note that because we do not know who is driving the vehicle, the unit of analysis will be the 
vehicle, not the driver. In some cases, a vehicle will be driven almost entirely by one driver, and in other 
cases, the vehicle will be shared. However, the anticipated limited number of drivers per vehicle and the 
inclusion of exposure data per vehicle allows for reasonable within-vehicle comparisons that reflect 
variability across the driver population. Focus areas for driver behavior questions will include alert rates, 
driver response after alerts, acceptance, and adaptation.  

Alert Rates 
 Generally, alert rates in this study will be calculated as a function of miles driven. Questions 
about alert rates include: 

• How do alert rates vary by alert setting and vehicle exposure patterns (e.g., typical speeds, 
following distances, and road types driven)? 

• What are alert rates by scenario (e.g., For FCA, is the lead vehicle braking, stopped, moving at 
constant speed, or accelerating, changing lanes, or is the driver changing lanes?) 

• How do alert rates vary with setting?  

Driver Response After Alert 
 Driver response to alerts is a key element in determining system effectiveness. However, when a 
driver brakes or steers after an alert, we cannot determine with absolute certainty whether he/she was 
responding to the alert or to the situation itself. When video is available (as in traditional FOTs), it is 
possible at least for trained video coders to subjectively rate how surprised they feel the driver appears 
to be by the alert. In the current video-less data collection, if a driver is on the throttle at the time of the 
alert, and the response is too close to the alert time (e.g., within 400 ms), we might judge that he/she 
was likely not surprised by the alert. However, true driver mental state cannot be completely measured, 
even with video data. Consequently, in this study, we will refer to driver response time as post-alert 
driver response to make it clear that no inference is made about driver’s mental state at the time of the 
alert, nor what cues the driver is responding to. 



 

4 

 To more fully address driver responses to alerts, we will develop scenario definitions for the FCA 
imminent alert by leveraging existing FOT datasets that recorded forward-looking video and continuous 
numeric kinematic data. These help us understand patterns of driver behavior in response to alerts. 

 Broad research questions that will be investigated include: 

• What is the post-alert response rate for each scenario? 
• What is the distribution of post-alert response times for each scenario? 
• What is the distribution of post-alert response times by setting, speed, and following distance? 
• What is the distribution of post-alert driver response times for vehicles based on normal driving 

habits (e.g., tendency to follow more closely than other vehicles)? 
• How often do drivers change lanes after an LDW? 

Acceptance 
 Driver acceptance in this study is defined in terms of setting choices. We did not survey drivers 
to ask for feedback on the systems, but when drivers turn the FCA or LDW system off, this can 
reasonably be interpreted as indicating that the system is not deemed acceptable. (Note the factory 
default setting for the FCA and LDW systems system is on). For FCA, there are additional alert timing 
(Far, Medium, and Near) settings available that can be used to assess driver preferences (with the Far 
setting used as the default option). 

 Broad research questions that will be investigated include: 

• What is the rate of use of each setting? How does this vary with interface design and driver 
demographics? 

• How does setting choice vary with normal driving characteristics? 

 

Adaptation 
 The final area of driver behavior that will be studied is potential adaptation (or change) over 
time associated with the systems under study. The initial request to participate in this study was sent to 
owners of vehicles that were as new as possible. This way, any changes in field performance can be 
observed within a period that starts early in vehicle ownership and ends after the approximately 1-year 
observation period. With a large number of vehicles (in this case approximately 2000), broad patterns of 
adaptation are likely to be discernable. 

 One challenge for this analysis is to distinguish between adaptation to a new vehicle versus 
adaptation to the warning systems being evaluated. However, even without a mandatory system-off 
baseline period (which would affect the natural behavior we are striving to observe), there are several 
promising avenues to making inferences about warning-specific adaptation. One is to compare patterns 
over time for vehicles where the system is off to those where the system is on. Another is to look at 
changes over time as a function of prior alert experience (e.g., total alert rate). A third avenue is to look 
at changes over time after a plausible grace period for vehicle adaptation (e.g., 1-2 months). Finally, 
changes in response to alerts themselves (e.g., post-alert response time) is more likely to represent 
adaptation to the alert system than adaptation to the vehicle. 
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 Questions about adaptation that will be addressed include: 

• How does post-alert driver response to FCA imminent alerts change over time? Does this vary 
with prior alert experience? 

• How does normal driving change over time (e.g., the distribution of headway and lane-keeping 
behavior)? Does this vary with prior alert experience? 

• Do drivers turn the system off or change settings over time?  
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Methods 

General Approach 

 This study makes use of the unique telematic capability of GM’s OnStar-equipped vehicles to 
capture data on production vehicles from consenting owners and send it wirelessly from remote 
locations across virtually the entire United States. Although the amount of data that can be captured 
from any one trip is limited relative to the extensive set of video and numeric data gathered in 
traditional FOTs, the ease of high-priority data capture allows massive samples to be collected relatively 
affordably in a rapid-turnaround manner. The data collected in the current effort were targeted towards 
understanding FCA and LDW field performance. General trip-level statistics and alert-triggered event 
data were captured from nearly 2,000 vehicle owner volunteers (distributed across 48 of 50 States) over 
the course of approximately 1 year of their normal driving. The data were analyzed with some reference 
to other FOT datasets available at UMTRI, including the ACAS FOT study and the Safety Pilot study, to 
augment and further develop the data analysis and interpretation. The followings sections provides 
details on the study methods. 

Participants 

 Study participants were recruited by e-mail from a list of OnStar subscribers to the Onboard 
Vehicle Diagnostics (OVD) service who were model year 2013 owners of either a Chevrolet Equinox, 
Cadillac XTS, or Cadillac SRX equipped with the systems evaluated in the current study. Efforts were 
made to include recently purchased vehicles as close as possible to the start of data collection. 
Consenting participants gave permission for OnStar to capture key data from advanced vehicle 
technologies and provide de-identified data to UMTRI for analysis. Participants received 6 months free 
OnStar services in exchange for their participation. As described below, the data collection occurred 
automatically, without any further action on the part of the participants (e.g., taking their vehicle to 
have data downloaded or acquisition systems installed). 

 At the time the vehicle owners agreed to participate in the study, they were asked to provide 
information on the primary driver age, primary driver gender, and the percentage of time that they felt 
the primary driver drove the vehicle. This was the only personal information included in the dataset, 
which was associated with a random vehicle identification number as part of the de-identified dataset 
provided to UMTRI for analysis.  

Systems and Interfaces 

Forward Collision Warning 

 The FCA system is intended to help the driver avoid or reduce the harm caused by rear-end 
crashes. The GM camera-based FCA production system used a single forward-looking camera sensor, 
located on the windshield ahead of the rearview mirror. (The reader is referred to Raphael et al. [2011] 
for a discussion of the development of a camera-based FCA system.) When driving in a forward gear, the 
system detects vehicles directly ahead that the driver is following and that are in the projected path of 
the vehicle. The system detects vehicles within a distance of approximately 60 m (197 feet), and 
operates at speeds above 25 mph.  
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 The key differences in the FCA system alerting approach for the three GM vehicles tested are 
summarized in Table 1. When the system detects a vehicle ahead, a green FCA system icon is lit to 
indicate the system is capable of providing FCA system alerts. When the driver’s vehicle is detected to 
be following a vehicle ahead much too closely, this icon turns amber to indicate a Tailgating Alert 
condition. When the driver’s vehicle is detected to be approaching a vehicle ahead too quickly, FCA 
provides a red flashing imminent Collision Alert either on the windshield or a high-mounted display. 
Additionally, eight rapid high-pitched beeps are presented from the front speakers, or if equipped with 
the safety alert seat (haptic seat) feature, five vibration pulses occur on both sides of the driver’s seat 
bottom.  

 As indicated in Table 1, in 2 of the 3 vehicles tested, the drivers could select the crash avoidance 
system (non-visual) alert type to be either beeps or safety alert seat via a vehicle customization menu. 
This Alert Type setting is used for both the FCA and LDW systems evaluated (described below). In 
vehicles equipped with the safety alert seat, the factory default setting for the alert type was safety alert 
seat.  

 The FCA control is located on the steering wheel, which allows the driver to set the FCA timing 
to Far, Medium, or Near, or to turn the system Off.” The factory default setting for FCA timing was Far.” 
The FCA timing setting affected the timing of both the Tailgating Alert and Collision Alerts, and remained 
until it is was changed by the driver. Finally, it should be noted that the system evaluated did not 
provide automatic braking, such as that provided by some front automatic braking (or crash imminent 
braking) production systems.  

Table 1 Forward Collision Alert Interface Design for Three Vehicles Studied 

 

Lane-Departure Warning 

 The LDW system is intended to help drivers avoid crashes due to unintentional lane departures. 
The GM production system used the same camera sensor used for the FCA system described above. The 
system detects lane markings and operates at speeds above 35 mph.  

 The key differences in the LDW system alerting approach for the three GM vehicles tested are 
summarized in Table 2. When the system detects either a left or right lane marking ahead, a green LDW 
system icon is lit to indicate the system is capable of providing a lane departure warning alert toward 
the detected lane marking. If the vehicle drifts across a detected lane marking without using a turn 
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signal in that direction, this icon turns amber and flashes. Additionally, depending on the lane departure 
direction, three left- or right-side low-pitched beeps are presented, or if equipped (and selected by the 
driver), the safety alert seat will pulse three times on the left or right side of the driver’s seat bottom. 
The LDW control allows the driver to set the LDW system to On or Off. The factory default for LDW 
setting was On. This setting remained until it is was changed by the driver. Finally, it should be noted 
that the system evaluated did not provide automatic lateral control or steering wheel “nudge” cues, 
such as that provided by some production lane-keeping or lane keep assist production systems.  

Table 2 LDW System Alerting Approach for GM Vehicles Studied 

 

Data Collection 

 The LDW and FCA warnings are generated by the front camera module (FCM), which both use 
the same forward-looking camera. The FCM accumulates and stores into its memory a pre-determined 
set of data during an ignition cycle. The data elements are described in the next subsection and 
appendix. When an ignition-on event occurs, the previous ignition cycle’s data are deleted.  

 For the consenting vehicle owners in this study, OnStar remotely loaded a custom script onto 
the onboard OnStar module to retrieve the data from the FCM after ignition-off. This data is then sent 
over the air through the OnStar system during an ignition-off state. The OnStar back office transforms 
the data into a de-identified form that can be transmitted and analyzed by UMTRI. De-identification 
included the removal of Vehicle Identification Number (VIN) information and assignment of an 
anonymous vehicle index (or identification) number that remained consistent throughout the study. 
UMTRI received files on a daily basis during data collection and was able to parse the data and convert it 
into engineering units with the support of GM and OnStar experts. If connection to the vehicle failed, 
the module would attempt to retrieve data upon the next ignition cycle. 

 Under some circumstances, such as a very short interval between key off and next key on or a 
failure of cell service, data were not transferred. However, timestamps and ID numbers on the records 
allowed us to identify data gaps.  

Data collection started on September 29, 2013, and continued until October 3, 2014. During the 
second six months of the study, it was possible that the OVD subscription could run out (even with the 6 
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months free OnStar offer) and not be renewed, leading to drop-out of some vehicles. However, most 
vehicles provided a full year of data. 

Data 

 Because the memory available on the FCM is necessarily very limited, the data collection was 
designed to be efficient and targeted at gathering high-priority data to understand FCA and LDW field 
performance. As discussed above, data fell into two categories: exposure-based, trip-aggregated 
statistics data, and event-based, alert-triggered data. Trip-aggregated statistics were designed to 
provide basic information about a trip in the form of histograms. Alert-triggered data was triggered by 
either an LDW alert or FCA collision (imminent) alert; with more detailed data gathered 3- to 6 sec 
before the alert (specific time is known), at the alert, and 4 sec after these alerts. 

Trip Aggregated Statistics 

 Trip aggregated statistics, also called “counter data,” consisted of a trip descriptors and 
histograms that were designed to capture key information about each trip. These were used to 
understand a vehicle’s exposure to various driving conditions. Key trip descriptors and histograms 
included the following. 

– Trip time, trip distance, odometer, number of FCA events, and number of LDW total 
events 

– Histograms (binned trip-level statistics): 

• Speed 

• Speed x Following a Vehicle Ahead (yes/no) 

• When following, Speed x Range 

• Wiper x Speed 

• Speed x Left/Right Lane Confidence 

• Lane Position 

• Trip-seconds x Setting  

• Speed x Headway (or Tailgating) Alert 

• Driver Settings for LDW (on/off) and FCA settings (far/medium/near/off) 

• Speed x Not-Ready-to-Assist (NRTA) for FCA 

• Speed x Not-Ready-to-Assist (NRTA) for LDW 

Alert-Triggered Data 

 Alert-triggered data, in contrast, consisted of a series of signals, collected at each of three time 
points relative to a FCA imminent alert or LDW alert, as illustrated in Figure 1. Data was collected using 
two 3-second buffers, in which new signals replaced the “old” ones every 3 seconds. At alert onset, the 
contents of the older of the two buffers was captured, resulting in pre-event data that were collected at 
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a known time between 3 and 6 sec before the alert. Data were also captured at the time of the alert and 
at 4 seconds after the alert. Finally, a counter was incremented every 50 msec throughout the trip. The 
value of that timer was captured at each of the three alert-triggered time points, in order to know the 
time within the trip of the event, as well as at the time at which initial brake travel was achieved. The 
timing of a brake onset that occurred within 4 seconds after the alert could be measured to within 50 
msec. Absolute time is collected at the start of the trip, so that the time of day of the event is known. 

 

Figure 1. Illustration of alert-triggered data collection timeline. 
 

 The alert-triggered data contained information describing the driving conditions at the three 
time points around the alert time. These included vehicle kinematics for both the host (driver’s) vehicle 
and lead vehicle, system state, road geometry, and driver response. Table 3 shows a list of the key 
signals from the alert-triggered data (see Appendix A for a complete list of signals used to support the 
analysis reported in the paper). 

Table 3 Key data signals for alert-triggered data 

Signal collected Sampling time 
relative to alert 

Time into trip Pre, at Alert, & Post 
FCA state (alert or not) Pre, at Alert, & Post 
LDW state (alert or not) Pre, at Alert, & Post 
Vehicle speed Pre, at Alert, & Post 
Accelerator position Pre, at Alert, & Post 
Lateral acceleration Pre, at Alert, & Post 
Yaw rate Pre, at Alert, & Post 
Driver brake switch (initial braking onset flag) Pre, at Alert 
Driver brake pedal position Pre, at Alert  
Turn signal status Pre, at Alert, & Post 
Range to target Pre, at Alert, & Post 
Target vehicle speed Pre, at Alert, & Post 
Lane position Pre, at Alert, & Post 
Lane tracking confidence Pre, at Alert, & Post 
GPS data (time, position) At Alert & Post 
Wiper state At Alert 

Brake activation time and max pedal travel During 4 s period 
after Alert 
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Assigning Time of Day, Sun Elevation, and Road Type Using Maps 

 To support analyses of system performance that considers time of day and the type of roadway, 
the GPS data associated with driver alert events were post-processed along with spatial information of 
time zones and road networks. This was necessary to determine the local time and road type classification 
surrounding alert events. For local time determination, the GPS data (which includes an absolute time 
stamp) associated with alerts is used, along with any necessary corrections for time zone and Daylights 
Savings Time (DST). These corrections are done using geographic information system (GIS) tools and 
polygons that represent the two corrections. Likewise, in order to determine road type, the GPS data 
associated with alert events are combined with digital maps to assign a road type attribute. As described 
further below, while this method of time zone assignment worked nearly perfectly, the method of road 
type assignment was successful approximately 75- to 80 percent of the time. After assigning time of day 
and road-type attributes to the alert events, GPS coordinates were removed from the dataset. 

Local Time of Day  

 To determine the time at which alerts occurred, the latitude and longitude associated with the 
alerts are overlaid on a set of National Institute of Standards and Technology (NIST) geospatial polygons 
that represent time zones (including regions with or without DST) in the United States. However, the 
NIST polygons do not include bridges and causeways that are at the edges of these time zones (e.g., 
bridges to barrier islands or other roadways close to coasts). Therefore, the time zones for alerts in 
these areas and other unrepresented areas are difficult to determine. The left side of Figure 2 shows 
yellow points for such cases of “misses” when alert time could not be determined. UMTRI therefore 
expanded each time zone to capture these areas with bridge and causeways structures. The lighter 
colored section on the right side of the figure illustrates the expansion of the time zone polygon and the 
resulting matches that occur (now in green). With this adjustment to the polygons, the local time of day 
was computed for over 99 percent of the alert events. 

 

Figure 2.  Overlaying GPS points of alert events before (left) and after modification (right) of NIST 
time zone polygons in a coastal area. 
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Sun Elevation Using Maps 

 Sun elevation is an indicator of outdoor natural illumination level. Sun elevation is the angle 
between the sun and the point on the horizon closest to the sun, so that it has a value of zero at sunrise 
and sunset, positive values during the daytime, and negative values during night. This variable is 
computed from latitude, longitude, and time of day and does not depend on the weather or the heading 
of the vehicle. Sun elevation is collected only at alerts and at end of trip. Thus, for analyses of usage and 
settings, sun elevation at end of trip is used because some trips have no alerts and therefore no 
measures of sun elevation during the trip. 

Road Type Using Maps 

 Road types are assigned to alert events when there is confidence in matching the GPS location 
with a digital roadway network map. Road type is defined using the Federal Highway Administration’s 
functional class definitions that are associated with the 2011 Highway Performance Monitoring System 
(HPMS) database. HPMS is a digital map that represents a subset of the national roadways, including the 
geometry of the road centerline and a variety of roadway attributes such as road functional class (i.e., 
road type). The HPMS is FHWA’s source for various attributes, extent, condition, performance, use, and 
operating characteristics of the national roadway network. The road types (functional classes) are 
shown in Table 4 below. (The “local” road type was discarded from the map-matching analysis because 
of the small number of national highway system roads that are classified at this level.) 

Table 4 Road types from FHWA’s functional classification scheme for 2011 
Code Description 

1 Interstate 

2 
Principal Arterial - Other Freeways and 
Expressways 

3 Principal Arterial - Other  

4 Minor Arterial 

5 Major Collector 

6 Minor Collector 

7 Local 
 
 The process to match the alert event locations involved overlaying the GPS latitude and 
longitude on the HPMS. Since neither the GPS data nor the HPMS geometrics are perfect, a buffer zone 
was created around roadway centerlines to model the drivable area of roads using estimates of the 
width of different road classifications and an assumed typical GPS error. Next, the GPS points were 
overlaid to determine whether the points fell within the buffer distance of a roadway in the HPMS 
database. Those points that fell within the buffered area were considered matches, or “hits,” and those 
that did not were considered to be points that were not matched to a road (i.e., misses). Additional 
heuristics were used to improve the fraction of points that were matched. This method was able to 
assign road type to about 75- to 80 percent of the alert events. 
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 Figure 3 below illustrates a typical result of the matching process near O’Hare Airport near 
Chicago. The “hits” are small green circles and align with the HPMS digital map, while the red “X” marks 
“misses.” These are associated with parking lots (lower left) or lower-level roads that are not included in 
the HPMS.  

 

Miss 
Hit 
HPMS Segment 

0 0.8 1.60.4 Kilometers

Figure 3. Alert Event Road Type Determination of “Hits” and “Misses” shown in the  
area around Chicago’s O’Hare Airport 

 
Data Validation 

Unexpected Data Issues 

 The data collection capability of the production FCM was designed and implemented before the 
start of this study. Thus, the data collected could not be changed or corrected during the course of this 
study. Of the parsed data, a few expected variables were unavailable or in error. Workarounds were 
found for some of them, and these are described in Appendix A. If no workaround was found, the data 
were not used. 

 One missing data element was FCA reason for Not-Ready-To-Assist (NRTA). Thus, for FCA, we 
could identify whether the system was ready to assist or not, but could not identify the reason. Another 
key piece of missing information was that related to lateral movement surrounding alerts, of particular 
importance for understanding driver response to LDW warnings. Unfortunately, yaw rate and lateral 
acceleration were both unavailable. However, we were able to use position in lane to estimate whether 
a lane change had occurred surrounding a LDW alert. The lane change algorithm and its use in data 
analysis are described in the results section. Finally, there was an error in some of the bits recording 
relative speed, as described in Appendix A. 
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Ground Truth Testing 

 The findings in this report reflect the results of active safety systems installed in production 
vehicles by the manufacturer, which therefore have been exhaustively validated and tested to 
understand all performance, robustness, and durability characteristics of the systems studied. By design, 
production level systems are intended to be mature, vetted, and thoroughly and stringently screened 
for accuracy at all levels of design and manufacturing to ensure that performance meets or exceeds 
system requirements. It should be stressed that the new, innovative techniques implemented to support 
this research were carefully implemented using “add-on” techniques and structures to ensure their 
complete independence from production systems performance.  

 Some ground truth testing was also conducted to verify key data signals and the robustness of 
this new data collection and archive process. Tests were used to verify the following. 

• All trip level exposure and time measures were being logged properly in the external object 
control module (EOCM) and OnStar module at the beginning and end of each ignition cycle. 

• All trip level counters (histograms) were being properly logged in the EOCM. 
• All pre-event, event, and post-event alert measures from the FCA, LDW, and associated vehicle 

systems were being properly logged in the EOCM when triggered. 
• All EOCM logged data were transferred to the OnStar module system upon ignition off. 
• All OnStar buffers were completely uploaded to the OnStar backhaul servers using customized 

scripts executed onboard the vehicle at the end of each trip. 
• Data captured by OnStar were completely transferred to UMTRI.  
• UMTRI algorithms properly parsed the OnStar data into correct engineering units. 
• UMTRI database population algorithms performed as expected. 

 The ground truth and data verification tests were conducted at the GM Milford Proving Ground 
(MPG) in Milford, Michigan. A total of 24 different test scenarios were conducted, focused primarily on 
FCA in-path conflicts, with three repeat runs of each test conducted for statistical robustness purposes. 
The general test categories included (number of initial conditions shown in parentheses): 

• Stopped Lead Vehicle (3), 
• Constant Closing Speed on a Lead Vehicle (6), 
• Lead Vehicle Slowing From a Constant Range (12), and 
• Cut-in by a Slower Lead Vehicle (3). 

 For all tests the “truth” was measured using a portable Vehicle-to-Vehicle (V2V) wireless system 
mounted in both the host (following) and lead vehicle. For these tests, the V2V technology exchanged 
basic GPS time, rate and position data between the two radios at a nominal rate of 7.5 Hz. In addition to 
equipping the host vehicle with V2V, a smart phone, mounted on the windshield, was used to capture a 
picture of the forward scene and GPS information at the time of the FCA event. Figure 4 shows a picture 
from the phone, taken at the time of the FCA, for one run of a stopped lead vehicle test at 45 mph. 
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Figure 4. Picture of a 45 mph stopped lead vehicle test at the time of the FCA 
 

 After each test (consisting of 3 runs), the host vehicle driver performed an ignition-off event for 
at least three minutes. This caused scripts residing in the OnStar system to execute and perform the 
necessary steps of moving the logged data for that trip and the FCA/LDW alert events to the OnStar 
backhaul servers. A remotely located OnStar engineer than ran additional scripts to extract these data 
from the OnStar database and populate files which were then immediately e-mailed to an UMTRI data 
analyst who parsed the files and populated various tables within the UMTRI OnStar database. Next, the 
UMTRI analyst ran a query on these tables to summarize all the measures from the tests, which were 
sent in a spreadsheet via e-mail to engineers conducting the tests at the track. The test engineers then 
reviewed the results for overall general accuracy before conducting more tests. Overall, 129 individual 
runs were conducted as part of this ground truth testing.  

 Following the tests and after the V2V data was post-processed, UMTRI engineers then 
synchronized the results reported via OnStar with the continuous measures produced by the V2V 
system. An example plot of the synchronized results is shown below in Figure 5. The figure shows a plot 
of speed (upper) and range (lower) as function of time for a constant closing speed test where the host 
vehicle is traveling at 60 mph and approaches a lead vehicle traveling at 50 mph. In the figure, the V2V 
results are shown as continuous measures, while the OnStar results are single values taken at an instant 
in time. This figure compares the OnStar estimated speed and range at the pre-event, event, and post-
event times overlaid on the same measures from the V2V system. In this example, the agreement of the 
measures from the two independent systems is reasonable given the overall resolution of the plots 
themselves. 
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Figure 5. Time series plot showing measured (V2V) and OnStar reported data for a  
single ground truth run 

 

 The results of these tests showed that at the time of the alert event the average difference 
between OnStar and V2V reported host speed was 0.18 mph (with a standard deviation of 0.73 mph). 
The corresponding average range difference was -2.2 m (with a standard deviation of 2.35 m), and 
corresponding average range-rate difference was 0.7 m/s (with a standard deviation if 0.9 m/s). In 
general, the OnStar reported range values tended to be slightly greater than the V2V reported range, 
while the OnStar range-rate values showed a slightly higher closing rate. 

Analysis Approach 
 The Results section describes the specific statistical and descriptive approaches used to answer 
each research question. These analyses generally followed the data analysis plan (Flannagan, LeBlanc, & 
Kiefer, 2013) that was delivered as part of the project. Appendix A provides details on the statistical 
modeling approaches uses to address each research question. Depending on the exact nature of the 
question, analysis was done at the vehicle, trip, or alert level. Statistical models were developed using 
either SAS 9.4 or R statistical software packages.  

 As mentioned earlier, a key aid for broadening the use and understanding of the current dataset 
involved developing algorithms using more detailed (including video) data previously gathered by 
UMTRI in the ACAS FOT and SP efforts. Specifically, the ACAS FOT, which studied an FCA system, 
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included detailed assessment of the scenarios for alerts, the rate at which these scenarios occurred, and 
driver’s subjective impressions of those alerts. In addition, the data-capture protocol for the present 
study (i.e., alert-triggered data at 3- to 6 seconds before, at, and 4 seconds after alert event) could be 
replicated for these earlier ACAS FOT data. This allowed for a direct comparison of scenario definitions 
using the OnStar protocol (present study) and the ones assigned in ACAS using the synchronized video 
and extensive set of continuous numeric data available. 

 In the SP effort, vehicles were equipped with a forward-looking aftermarket Mobileye camera 
system that can be thought of, at least at a high level, generally representative of the production camera 
sensor used in the present study. Thus, the measurement of range and range-rate used could be 
compared in the SP versus the current effort. False detection of targets could also be compared because 
the video gathered in the SP effort allowed for verification of target presence. Since the SP drivers did 
not experience alerts, their data could not be used to look at driver response, but plausible alert 
algorithms could be implemented and compared to data from the current study. 

 Before the results are presented, it should be stressed that although each of the three MY 2013 
vehicles used in the current study used the same camera-based sensor, relatively small differences in 
the FCA and LDW alert timing experienced by the driver may exist across vehicles due to differences in 
vehicle-related factors such as vehicle electrical architectures, system software versions, system delays, 
and HMI interface delays. Hence, the reader is cautioned that any vehicle model or vehicle-model-
related (e.g., HMI) effects reported in this analysis, or where these effects interacting with other 
variables (e.g., whether FCW or LDW system was on or off) in this analysis, could be partly due or fully 
explained by these differences. This caveat is particularly true if the observed differences across models 
are small in magnitude. 
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Results 

 The results are organized as follows. First, we present descriptive statistics on vehicles, trips, and 
FCA and LDW alerts. Second, we present algorithms that were developed from ACAS and SP data to 
deepen and broaden the analysis (e.g., FCA scenario classification of alerts). Finally, we present further 
statistical analysis of questions addressing for both FCA and LDW: (1) system performance, (2) alert 
rates, (3) driver response after alerts, (4) acceptance (e.g., on/off settings), and (5) adaptation over time.  

Descriptive Statistics 

 Table 5 shows the distribution of vehicle make-models in the sample. Although participants 
were recruited across the three vehicle types and opt-in was not limited within a vehicle type, the 
representation of each vehicle was nearly equal. Demographic information was not obtained for 8 
vehicles.  

Table 5 Sample counts by vehicle make-model 
Vehicle Sample Size Percent of Sample 

MY 13 Cadillac XTS 619 32% 

MY 13 Cadillac SRX 659 34% 

MY 13 Chevrolet Equinox 672 34% 

Vehicles with missing 
demographic info 

 8 0.5% 

Total 1,958  

 

 Table 6 shows the distribution of the primary-driver age groups, and Table 7 shows the 
distribution of primary-driver gender. Ages 60 to 79 made up the largest group, followed by ages 40 to 
59. The gender distribution is close to even, with a slightly larger number of females compared to male 
primary drivers. Figure 6 shows the distributions of age groups for males and females separately. 
Females tend to be over-represented in older age groups compared to males. 
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Table 6 Sample counts by age group of primary driver 
Age Group of Primary Driver 

(years) 
Number of Vehicles Percent of Sample 

<40 143 7.3% 

40-59 601 30.7% 

60-79 1,078 55.1% 

80+ 128 6.5% 

Unknown 8 0.4% 

 

Table 7 Sample counts by gender of primary driver 
Gender of Primary Driver Number of Vehicles Percent of Sample 

Male  930  47% 

Female  1,020  52% 

Unknown 8 0.4% 
 

 

Figure 6. Number of participants in each age group, broken down by gender. 
 

 Figure 7 shows the number of vehicles enrolled in each State, and provides evidence of the 
geographic span advantage associated with this OnStar data collection technique. Only Montana and 
the District of Columbia have no residents in the sample.  

 



 

20 

 

Figure 7. Distribution of primary-driver home State.  
 

 Table 8 provides high-level descriptive statistics for the sample of vehicles, trips, and alerts. 
Note that the table includes alerts that, although recorded, were not presented to the driver because 
the system was turned off. 

Table 8 Descriptive statistics for sample 

Total Vehicles  1,958 

Total Trips 2,463,142 

Total Miles of Driving 18,815,458 

Total Hours of Driving 615,054 

Total LDW Alerts 10,058,567 

Total FCA Tailgating Alerts 1,830,501 

Total FCA Imminent Alerts 260,756 

 

 Table 9 shows descriptive statistics for statistics for starting and ending odometer, miles 
traveled, and trip durations. For example, half the vehicles began the study with an odometer of 2,368 
miles or less. Vehicles traveled an average of 10,848 miles during the course of the study. A typical 
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(median) trip (defined as an ignition cycle) lasted 9.5 minutes, whereas a 95th percentile trip length was 
46 minutes. Of the 1,958 vehicles in the study, 794 (40%) were observed for 365 days (measured from 
the first to last data observation); 75 percent were observed for 11 months or more, and 95 percent 
were observed for 7 months or more. 

Table 9 Mean, median, 5th and 95th percentiles of vehicle statistics 
Statistic Mean Median 5th Percentile 95th Percentile 

Starting Odometer 
(miles per vehicle) 3,206 2,368 613 8,247 

Ending Odometer 
(miles per vehicle) 14,054 13,048 4,825 26,616 

Total Miles Driven 
In Study (per 
vehicle) 

10,848 10,046 3,250 21,263 

Ave. Trip Duration 
(min) 15.0 9.5 0.7 46.2 

 

 Table 10, Table 11, and Table 12 provide descriptive statistics for the number of miles between 
alerts as well as alert rates per 100 miles (shown in corresponding parenthesis) for LDW, FCA headway 
(tailgating), and FCA imminent alerts for each FCA setting. (The reader is reminded that alerts are 
recorded in the Off setting, even though these alerts were not presented to the driver). The rates are 
computed for each vehicle across the study period, so the 5th and 95th percentiles are among vehicles. 
There were 8 vehicles that had no FCA tailgating alerts and 2 vehicles that had no FCA imminent alerts, 
and these were excluded from the calculation (since miles between alerts is infinite). 

 For LDW, the alert rate for the Off setting is generally higher than for the On setting, with 
median LDW alert rates (per 100 miles) increased by 29 percent. For FCA imminent alerts, the Off setting 
uses the same alert timing algorithm as the Far setting, and the alert rate appears higher for those who 
turn the system Off, with median alert rates (per 100 miles) increased by 19 percent. The Near and 
Medium alert timing algorithms are different, and thus cannot be compared directly to the Far and Off 
settings. As expected, based on the alert timing algorithms, the Near setting results in the fewest FCA 
imminent alerts per mile and Medium setting is between Near and Far with respect to imminent alert 
rates.  

 For FCA headway alerts, once again, the Off setting uses the same algorithm as the Far setting, 
and the headway alert rate appears somewhat higher for those who turn the system Off, with median 
alert rates (per 100 miles) increased by 18 percent. Once again, the Near and Medium headway alert 
timing algorithms are different, and thus cannot be compared directly to the Far and Off settings. As 
expected based on the alert timing algorithms, the Near setting results in the fewest headway alerts per 
mile and Medium setting is between Near and Far with respect to headway alerts rates.  

 As can be seen by comparing results across Table 11 and Table 12, for the Medium and Far FCA 
settings, headway alerts occur more frequently than imminent alerts. In sharp contrast, for the Near 
setting, headway alerts occur considerably less often than imminent alerts. 



 

22 

Table 10 Mean, median, 5th and 95th percentiles of miles between LDW alerts 
(alerts per 100 miles in parentheses) by setting 

LDW Setting Mean Median 5th  95th 

On 3.5 (44.3) 2.7 (37.4) 0.87 6.59 

Off 2.8 (55.1) 2.1 (48.4) 1.00 8.65 

 

Table 11 Mean, median, 5th and 95th percentiles of miles between FCA headway 
alerts (alerts per 100 miles in parentheses) by setting 

FCA Setting Mean Median 5th 95th 

Near 1101.6 (1.1) 574.1 (0.2) 48.5 3655.1 

Medium 91.8 (3.8) 42.2 (2.4) 7.9 290.8 

Far 20.4 (11.4) 12.3 (8.1) 3.0 60.1 

Off (compare to Far) 19.3 (13.7) 10.5 (9.6) 2.5 65.9 

 

Table 12 Mean, median, 5th and 95th percentiles of miles between FCA 
imminent alerts (alerts per 100 miles in parentheses) by setting 

FCA Setting Mean Median 5th 95th 

Near 322.0 (1.4) 184.5 (0.5) 32.1 1033.4 

Medium 239.6 (1.2) 132.9 (0.8) 27.2 739.3 

Far 145.6 (1.7) 91.6 (1.1) 19.5 443.3 

Off (compare to Far) 135.6 (2.3) 77.2 (1.3) 17.1 370.7 

 

Algorithms to Aid Analysis 

Identifying Lane Changes versus Returning to Lane 

 Immediately following either a LDW or FCA imminent alert event, the driver might return to 
his/her lane (after a lane departure) or execute a lane change. (Note FCA imminent alert responses have 
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been shown typically to not involve lateral movement). Since maximum/minimum yaw rate and lateral 
acceleration were not available for analysis, a workaround was developed that involved using lane 
position to estimate whether or not the vehicle completed a lane change within 4 seconds following an 
alert.  

 The basis for this lane change detection algorithm is illustrated in Figure 8, with further details 
provided in Appendix B. Figure 8 shows the absolute value of the difference in left-lane-boundary offset 
at event and 4 sec after event. The data shown come from UMTRI’s Safety Pilot Model Deployment 
effort, and in this case, events are defined using lane excursions. However, similar results were found 
using an FCA algorithm. The figure shows that the distribution of the difference in left-lane offset is 
quite different for lane changes versus cases when the vehicle returns to the original lane of travel. The 
lane change detection algorithm that was employed assigned lane changes only to those events where 
the difference was greater than 0.5 m (or 20 inches; shows by the black vertical line) between the time 
of the alert event and 4 sec after this event. 
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Figure 8. Left Lane-Offset Change for Lane Change and Departure Events From Safety Pilot 
 

Identifying Active Braking versus Coasting  

 Although the data indicated whether the HV driver braked between the alert and 4 sec after the 
alert, the same information was not available for the LV. Since a braking lead vehicle triggers brake 
lights, but a coasting lead vehicle does not, we used an algorithm to separate these two deceleration 
scenarios. Details of this algorithm are provided in Appendix B. 

 The host vehicle deceleration distribution from the OnStar dataset is shown in Figure 9. The 
figure shows an inflection point at approximately -0.55 m/s2, where it is inferred that the mechanism of 
deceleration changes from coasting (release of accelerator) to active braking. Thus, if the average 
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acceleration of the LV was less than -0.55 m/s2, then the LV was considered to be actively braking 
(rather than coasting).  
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Figure 9. Distribution of average host vehicle acceleration between the FCA Imminent Alert and 4 
seconds following the alert. 

 

Identifying FCA Imminent Alert Scenarios 

 Building upon the lane change and lead-vehicle-braking algorithms described above, we 
developed seven FCA imminent alert scenarios that were exhaustive and mutually exclusive. These were 
chosen to correspond generally to FCA scenarios identified in the ACAS FOT, which employed a more 
detailed scenario classification that could be supported via the use of available video data.  

 Figure 10 presents a flowchart of the FCA alert categorization. At the top level, the key 
distinction is between FCA imminent alert events where the LV remains 4 seconds after the alert (i.e., an 
“in-path” vehicle scenario) versus events where this is not true. These latter cases include events where 
there is either no LV 4 seconds after the alert or a new lead vehicle appears 4 seconds after the alert. 
For analysis purposes, all cases in which the LV does not remain in path after 4 seconds are treated 
equivalently. 

Alerts in which the lead vehicle remains “in path” (shown on the left side of Figure 10) are 
further divided into three categories based on the behavior of the lead vehicle: LV slowing, LV stopped, 
and LV moving at a constant speed or accelerating. These first two categories of alerts are of potentially 
greater interest, since they correspond to scenarios where driver braking action is more likely required 
to resolve the situation relative to the third category (LV moving at a constant speed or accelerating). 
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 Alerts where the LV changes or no vehicle is detected 4 seconds after the imminent alert fall 
into three categories shown on the right half of Figure 10. First, out-of-path alerts are characterized by 
the estimated presence of an oncoming lead vehicle (as detected by the system). In this scenario, the 
oncoming vehicle is judged to be in a different (oncoming) lane and the system is assumed to have 
misidentified the threat as being in path and moving in the same direction as the HV. Similar events 
were identified in the Safety Pilot dataset using a Mobileye-based FCA system, where forward-looking 
video could be used to confirm that these alerts largely consisted of oncoming vehicles in an adjacent 
lane. Host-vehicle lane change alerts occur when the HV changes lanes and during this lane change 
approaches the vehicle in its original lane in a manner that triggers the FCA imminent alert. These are 
identified by the presence of a lane-change maneuver on the part of the HV after the alert. Finally, the 
remaining cases are categorized either as ones in which the LV turns or changes lanes out of the path of 
the HV, or as unknown. This latter category is probably the least homogeneous, since it includes any 
alert that could not otherwise be classified. 

 Figure 10 also shows the estimated proportion of each category among FCA alerts in this 
dataset. “In-path” alerts made up just over 50 percent of the sample, with LV at a constant speed or 
accelerating making up 31 percent of the sample, followed by LV slowing at 19 percent of the sample. 
The in-path LV stopped case made up less than 1 percent of all alerts. Out-of-path (OOP), on-coming 
traffic alerts made up 2 percent of the sample, while HV lane change, LV turn or lane change, and 
unknown motions together combined to make up 48 percent of the sample.  
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Figure 10. FCA Imminent Alert Scenario flowchart (HV=host vehicle, LV= lead vehicle) 
 

Normal Driving Behavior 

 The normal driving statistics were created using the available trip-by-trip counter data collected 
by the OnStar system. To create the normal driving statistics the counter data from the OnStar system 
was aggregated over the course of the study (for studying setting choices) or for each month of the 
study (for studying adaptation in normal driving). These included: 

• Proportion of time over left lane boundary,1 
• Proportion of time over right lane boundary,2 
• Proportion of time driving under 35 mph (which was the reference level used in the analysis), 

between 35 mph and 55 mph, or over 55 mph,  
• Proportion of time following another vehicle, 
• Average follow distance when following,3 

                                                            
1 Calculated as proportion of the time when lane boundary confidence is high that the center of the vehicle is 
within 1 m (39 inches) of the left lane boundary. 
2 Calculated as proportion of the time when lane boundary confidence is high that the center of the vehicle is 
within 1 m (39 inches) of the right lane boundary. 
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• Average monthly miles, and 
• Preferred Alert Type setting: safety alert seat versus beeps (applicable to Cadillac XTS and SRX). 

 The counters were processed in one of two ways. For the variables that had pre-specified ranges 
of interest, the driving statistics were calculated directly from this data, including over lane proportions 
and the proportion of driving in 35 to 55 mph or 55 mph+. The over lane proportions were drawn from 
histograms that tracked the time that the vehicle’s camera (positioned at vehicle centerline) was within 
1m of the appropriate lane boundary. Since the vehicles in this study were approximately 1.85 to 1.90 m 
wide, any time these counters were incremented the vehicle was assumed to be over, or nearly over, 
the lane boundary. The speed bin cutoffs were determined by both ranges of interest and the available 
counter data, since speed was tracked in histograms. 

 The next two normal driving statistics are average following distance and proportion of time 
following a vehicle ahead. These were both stored in a series of histograms broken down by driving 
speed. This meant that there were multiple ways to form the driving statistics. To begin, the average 
following distance and proportion of time following were calculated for all of the available speed ranges. 
These values were then analyzed with principle components analysis (PCA). The results of the PCA 
indicated that the vast majority of the variability was captured by the first principle component, which 
was essentially an average of all the counts. The second principle component indicated that there might 
be some information in the difference between the following distance at lower speeds and at upper 
speeds, but this only accounted for a small amount of variability. During the first round of model fitting, 
these statistics were split into two values each, one for speeds of 45 mph or less and the other higher 
than 45 mph. These values proved to be highly correlated and the two speed ranges were never 
significant in the same model. As such, they were simplified to a single value each, combining all the 
speed histograms. Finally, the normal driving statistics were standardized to increase interpretability of 
effect sizes across the factors examined. 

System Availability 

 Availability (ready-to-assist or RTA) rates were constructed using histograms of speed and not-
ready-to-assist (NRTA) counters. Since the systems are always unavailable under the design speed 
thresholds (25 mph for FCA and 35 mph for LDW), the analysis of the availability rate was conducted for 
the speed ranges greater than these thresholds. Beyond minimum operating speeds for the FCA and 
LDW systems evaluation, it should be noted that FCA alerts are only available only when a target is 
detected ahead by the FCA system in the same lane as the host vehicle (i.e., closest in-path vehicle or 
CIPV).  

 Figure 11 and Figure 12 show histograms of the average RTA rates per vehicle for LDW and FCA, 
respectively, broken down separately for each vehicle model. Their characteristics are very similar 
regardless of vehicle model. The median rates are about 80 percent for LDW and 90 percent for FCA; 
with the SRX showing a slightly higher availability rate compared to the other models for both the LDW 
and FCA systems. The long-tailed distributions to the left in both figures indicate that some vehicles had 
low system availability, and that availability rate is significantly vehicle-dependent (particularly for LDW). 

                                                                                                                                                                                                
3 Calculated using histogram data collected by OnStar. The centerpoint of each histogram bin was used to 
determine the distance value for the time spent in that bin. 
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Figure 11. Distribution of availability rate of LDW by vehicle 
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Figure 12. Distribution of availability rate of FCA by vehicle 
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 Reasons for NRTA conditions were investigated by looking at LDW and FCA NRTA counters, 
shown in Table 13. However, because of data issues with NRTA (described in Appendix A), only adverse 
weather and low visibility were considered reliable for FCA. If NRTA occurs for multiple reasons at the 
same time, both reasons are independently recorded in the respective counters, and therefore the sum 
of those counters for all the unavailability reasons can be greater than the total driving time. Table 14 
shows the breakdown of the LDW and available FCA NRTA reasons as a percent of driving time over 
threshold. Although the minimum-speed threshold for LDW is 35 mph, the speed counter bin extended 
from 25 to 45 mph. Thus, rather than try to split the bin, we used only bins with speed known to be 
above the system operation threshold (i.e., speeds above 45 mph).  

Table 13 Reasons for the system unavailability 
Bit LDW FCA 
0 Speed under threshold (35 mph) Speed under threshold (25 mph) 
1 Adverse weather Adverse weather 
2 Low visibility Low visibility 
3 Invalid left lane position Speed above threshold (255 mph) 
4 Invalid right lane position 

 5 Single-lane performance 
 Closest-in-path vehicle not detected 

 

Table 14 Reason for NRTA as a percent of driving time over 45 mph  
Not-Ready-to-Assist (NRTA) 

Reason 
LDW NRTA as Percentage of 

Driving Time at >45 mph 
FCA NRTA as Percentage of 

Driving Time at >25 mph 
Speed below threshold 0.22% N/A 

Adverse weather 0.07% 0.08% 

Low visibility 0.02% 0.02% 

Left lane not valid 11.8% N/A 

Right lane not valid  12.6% N/A 

 

Driver Behavior 

Acceptance (Choice of LDW and FCA System Settings) 

 Driver acceptance in this study was measured by the choice of settings over the course of the 
study. This information was summarized in trip histograms that indicated the total time of each trip 
under each setting.  

 The total driving time in each alert type setting for the three vehicle models is shown in Figure 
13. The selected setting applied to both FCA and LDW. As the graph indicates, Equinox drivers had only 
the beeps setting, but Cadillac drivers could choose for alert type either beeps or the safety alert seat 
(SAS). Cadillac drivers used SAS for approximately 90 percent of the total driving in this study.  
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Figure 13. Percentage of total driving time for each alert type  

LDW 
 Table 15 shows the percent of time for which LDW was on or off, both overall, and as a function 
of Alert Type settings (safety alert seat versus beeps). Overall, LDW was on about 50 percent of the 
time. However, when the safety alert seat Alert Type setting was selected on the XTS and SRX, system 
usage doubled (from 32% to 64%) relative to Equinox drivers that are not provided the SAS option (and 
instead are only provided beeps). The subset of SAS users who also had a Heads-Up Display (HUD) was 
associated with an intermediate use rate at 56 percent.  

Table 15 Percent LDW Setting by Interface 
Setting Overall Beeps Safety Alert Seat 

(Haptic Seat) 
Safety Alert Seat 

(Haptic Seat) 
+HUD 

On 49.6 31.9 63.8 56.8 
Off 50.4 68.1 36.3 43.2 

  

 We used a multivariate logistic regression model to predict LDW setting as a function of driving 
time and trip characteristics. The unit of analysis was a trip, and each trip was classified by the majority 
(i.e., highest percentage) setting on the trip, based on the system setting counters. Other predictors 
were restricted to those measures that are available at the trip level, including primary driver age and 
gender, trip distance (miles), sun elevation measured at end of trip (degrees), and the fraction of trip at 
high speeds (55mph+). Sun elevation is a measure of outdoor light level, and the end-of-trip measure is 
used here because some trips have no alerts and therefore no sun elevation samples during the trip. 
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Each vehicle’s odometer reading at the end of the trip was treated as the time variable, which takes into 
account that different drivers accumulate alert experiences at different rates.  

 The full model, built using the general estimating equations (GEE) method, is provided in 
Appendix C. Non-significant predictors were excluded from the model and significant interaction terms 
were included. Significant predictors include odometer, fraction of the trip at 55+mph, number of LDW 
alerts on the trip, age, gender, vehicle model, trip length, HUD available, and night. Interactions include 
vehicle type X odometer, vehicle type X night, and vehicle type X gender. For odometer, there is a 
flattening (or stabilization) of setting proportions at 10,850 miles, which was modeled using a piecewise 
model.  

 For odometer readings less than the 10,850-mile cutoff, there is significant effect of odometer 
(modeled on a log scale) with increasing odds of the system being turned off. The Cadillac models have 
both significantly lower starting odds of having the system Off and a slower rate of increase in having 
the system turned off as compared to the Equinox. Over these for 10,850 miles, Equinox drivers 
increased their Off rate from 38 percent to 78 percent on average. SRX drivers increased their Off rate 
from an average of 20 percent to 38 percent, and XTS drivers increased their Off rate from an average of 
32 percent to 40 percent over the first 10,850 miles. Figure 14 shows observed and modeled 
proportions of trips with LDW Off (the majority of the time) as a function of odometer and vehicle type.  
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Figure 14. Proportion of trips with LDW Off (for the majority of the trip) by odometer for each 
make/model. Observed proportions are shown with solid lines and corresponding modeled 

values are shown with dotted lines. 
 

 Increased age predicts a lower odds of system deactivation (about 1% decrease per year of age) 
as does proportion of the trip at high speeds (for every 1% increase in trip proportion over 55 mph, the 
model predicts a 0.5 percent decrease in the odds of system deactivation). Presence of the HUD has the 
opposite effect (14% increase in odds of system deactivation) as do higher numbers of LDW alerts on the 
trip (presented to the driver or not). For every additional alert on a trip, the odds of system deactivation 
increase by 4 percent.  

 Gender and the ending lighting conditions have substantially different effects between vehicle 
models. Men driving an Equinox have 11 percent lower odds of turning the system off compared to 
women, but this trend is reversed for the SRX (18% higher odds of Off for men) and XTS drivers (12% 
higher odds of Off for men). Trips that end after civil dusk are more likely to have the system 
predominantly off for Equinox drivers, increasing the odds by about 18 percent, but the reverse is true 
for SRX drivers, for whom the odds of turning the system off fall by about 7 percent under similar 
circumstances. Drivers in XTS model vehicles see a small but non-significant increase in their odds of 
disabling the LDW system for trips ending after dusk.  
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 It should be noted that odds ratios are not the same as risk ratios, particular in this context. In 
most cases, odds ratios will be higher than their corresponding risk ratios. However, risk ratios can only 
be computed for specific values of other model predictors (e.g., a 45-year-old XTS driver with 50% of trip 
above 55 mph, 4 LDW alerts, haptic setting, no HUD, and a trip ending during the day). Thus, 
interpretation of the odds ratios is best done in relative terms. For example, in this analysis, odometer 
over the first year has the largest effect on system setting rates of all of the predictors, and the effect of 
a 10-year increase in age is about the same magnitude as the gender effect for Equinox. 

 A second logistic regression model was built to investigate the relationship between normal 
driving behavior and LDW setting choice. The dependent variable was the dominant setting choice for a 
trip. Predictors were aggregated over all driving for a given vehicle and included proportion of time over 
left lane boundary and over right lane boundary, proportion of time driving under 35 mph, between 35 
mph and 55 mph, and over 55mph, proportion of time following another vehicle, average follow 
distance when following a detected vehicle, average monthly miles, safety alert seat use (yes/no), driver 
age and gender, vehicle model and HUD use. Normal driving statistics were standardized across vehicles 
so that effect sizes could be more readily compared across those predictors. The full model is provided 
in Appendix C. Significant predictors were the proportion of time over the right lane, proportion of 
speed in the 35-55 mph range, average following distance, average monthly miles, SAS availability 
(Cadillacs only), HUD availability, SAS use, and the interactions of SAS with each of over right lane 
proportion and average monthly mileage. 

 For the LDW setting model, the normal driving statistics are generally influential. Individuals 
who are one standard deviation above the average for proportion of time driven over the right lane 
boundary have odds of disabling the system 43 percent higher than drivers at the average proportion. 
The effect of driving in the 35-55mph speed range is similar, with a one standard deviation increase in 
the proportion of time driving in that range scaling the odds of disabling the system by 48 percent. Both 
of the effects described above are only seen for Equinox drivers, however. Increasing the average 
monthly miles has a similar effect, also leading to increased odds of system deactivation (odds ratio of 
1.42). In the other direction, individuals with an average following distance one standard deviation 
above the mean for the sample tend to leave the system enabled (odds ratio reduction of 9%). As can 
also be seen in Table 15, having the SAS available (i.e., vehicle is SRX or XTS) also markedly decreases the 
probability of turning off the LDW system, and the effect almost doubles when SAS is the dominant alert 
type for the driver (both SAS availability and use have an odds ratio of approximately 0.5). Conversely, 
the presence of a HUD, only possible in a subset of the vehicles with SAS, increases the probability of 
deactivating the system. When both SAS and a HUD are available, the odds of deactivation are 37 
percent less than for a beeps-only vehicle; when SAS is available without a HUD, odds of deactivation 
are 50 percent less than for a beeps-only vehicle. Finally, if the SAS is used for the majority of the study, 
the trend toward system deactivation seen for individuals with above average monthly mileage is 
markedly reduced as well. 

FCA 
 Table 16 shows the percent of time for which FCA was in each alert timing setting, both overall 
and for specific FCA imminent alert types. Overall, FCA was on about 91 percent of the time. However, 
with the safety alert seat selected, the system was turned on 97.5 percent of the time, compared to 84.3 
percent for drivers who used beeps (Equinox drivers and 10 percent of Cadillac drivers). The subset of 
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SAS users who also had a head-up display (HUD) was associated with use rates of 94.5 percent. Far was 
the most popular setting, followed by Medium, Near, and Off. 

Table 16 Percent FCA Setting by Interface 
Setting Overall Beeps Safety Alert 

Seat 
(Haptic Seat) 

Safety Alert Seat 
(Haptic Seat) 

+HUD 
Near 15.1 13.7 13.9 6.7 
Medium 17.2 22.1 17.9 15.3 
Far 58.7 48.6 65.7 72.5 
Off 9.0 15.7 2.5 5.5 

 

 Multivariate generalized logit models were used to model the multinomial probabilities of the 
four FCA settings as a function of trip characteristics. The unit of analysis was a trip and trip-level setting 
was defined as the dominant (highest percentage) setting for the trip. Potential predictors considered 
included: driver age and gender, trip distance (miles), trip ending after dusk (yes/no), and fraction of trip 
at high speeds (55mph+). Each vehicle’s odometer was treated as the time variable, allowing for 
different drivers to accumulate experience at different rates. 

 The full model, built using the GEE method, is provided in Appendix C. Non-significant predictors 
were excluded from the model and interactions were considered. Because multinomial models involve 
more than two levels of the dependent variable, we selected Far as the reference setting for comparison 
purposes. Thus, the model presented consists of three sub-models that describe the odds of setting the 
FCA to one of the other three settings as opposed to the odds of setting the FCA to the Far setting. It is 
possible to re-parameterize to compare any two settings, but we present results in this way to try to 
simplify an already complex model. 

 Odometer, driver age and vehicle model were significant in all three sub-models. In all cases, 
increasing odometer results in vehicles initially moving away from the Far setting, but interestingly, the 
significant quadratic term in the Far versus Off and Far versus Medium sub-models leads to an increase 
in the odds of Far after about 12,000 miles. This pattern holds for all three vehicle models and is shown 
in Figure 15 (Equinox), Figure 16 (SRX), and Figure 17 (XTS). Consistent with the results shown in Table 
16, drivers of both Cadillac models (equipped with the safety alert seat) show a higher preference for 
the Far setting in general than the Equinox (SRX: 66% lower odds of Off, 73% lower odds of Near, and 
57% lower odds of Medium than Equinox; XTS: 40% lower odds of Off, 60% lower odds of Near, and 52% 
lower odds of Medium than Equinox). In addition, the time trends for the Cadillacs are much less 
pronounced than for the Equinox. 
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Figure 15. Observed (solid) and modeled (dotted) proportion of each FCA setting as a  
function of odometer for the Equinox. 

 

Figure 16. Observed (solid) and modeled (dotted) proportion of each FCA setting as a  
function of odometer for the SRX. 
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Figure 17. Observed (solid) and modeled (dotted) proportion of each FCA setting as a  
function of odometer for the XTS. 

 Increased age tends to increase the odds of the FCA being left on the Far setting, but the effect 
weakens as the comparison setting becomes more similar. For example, a 10-year increase in age is 
associated with 20 percent lower odds of Off (compared to Far), 7 percent lower odds of Near, and 4 
percent lower odds of Medium. 

 The fraction of the trip spent at speeds of 55mph or greater is significant in differentiating 
between Far and Off or Far and Medium, in both cases favoring the Far setting. Trips with an additional 
10 percent of time spent above 55 mph have 3 percent lower odds of using Off and 2 percent lower 
odds of using Medium. Near versus Far is not predicted by the fraction of trip over 55 mph.  

 Finally, the presence of a HUD and trips ending after dusk only have a significant effect on the 
odds of Off versus Far. Drivers with the HUD available were much less likely to select Off compared to 
Far, though the size of the effect decreases with increasing age (e.g., at age 40, drivers of HUD-equipped 
vehicles have 90 percent lower odds of Off [versus Far]; at age 50, those drivers have 80 percent lower 
odds of using the Off setting [versus Far]). The effect of night was to increase the odds of Off by 7 
percent for Equinox drivers and decrease the odds of Off by 21 percent for Cadillac drivers.  

 A second multivariate generalized logit model was developed to look at the relationship 
between normal driving behavior and FCA setting. The resulting FCA model again consists of three sub-
models (see Appendix C). Significant predictors include age, vehicle model, proportion of time spent 
following and the vehicle model X proportion of time following interaction. 
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 Increasing age has a small but significant effect, resulting in a 16 percent decrease in the odds of 
Off and an 11 percent decrease in the Odds of Near for every additional decade of age. For the Medium 
setting, the age effect is not significant, but there is a sizable effect of average follow distance, such that 
Equinox drivers who follow more closely have a higher likelihood of choosing the Medium setting (1 sd 
closer average following results in 30 percent greater odds of choosing Medium over Far).  

 In all three sub-models, the existence of the SAS as an option (i.e., Cadillac models) is highly 
significant, and markedly decreases the odds of settings other than Far. SRX drivers have 74 percent 
lower odds of Off, 74 percent lower odds of Near, and 60 percent lower odds of Medium compared to 
Equinox drivers. XTS drivers have 74 percent lower odds of Off, 56 percent lower odds of Near, and 60 
percent lower odds of Medium compared to Equinox drivers. 

Alert Rates 

 For both FCA and LDW, alert rate was examined using alerts per 100 miles (rather than the miles 
between alerts measure also provided earlier in the Descriptive Statistics section). Modeling of alert rate 
was performed at the trip level, and focused on FCA imminent collision alerts and overall (combined left 
and right) LDW rates. Each rate was modeled using a Poisson rate model taking the trip distance in 
hundreds of miles as the exposure. Poisson regression is commonly used to model count data and it is 
able to take into account exposure. In this case, exposure is miles driven (in 100-mile increments) and 
the dependent variable is counts of alerts. Initial predictors included Day/Night status at the end of the 
trip, fraction of trip at high speeds (55mph+), odometer (miles; log-transformed), age (years), gender, 
vehicle model, and HUD presence. Details of both models, along with separate models of left LDW and 
right LDW rates are shown in Appendix C. 

LDW 
 The significant LDW model parameters are log-odometer, vehicle model, proportion of trip over 
55 mph, night, setting, HUD, and the log-odometer X setting, vehicle model X setting, and log-odometer 
X vehicle model interactions. The effect of odometer for different settings and vehicle models is shown 
in Figure 18. As previously shown in Table 10, overall alert rates are consistently higher when LDW is 
turned off. The results show that as the odometer increases, the LDW alert rate also increases (as a log 
function). The rate of increase is 3 percent slower for individuals with the system turned off, but having 
the system off increases the baseline number of alerts by over 200 percent on average. Among vehicle 
models, SRX drivers have a slightly lower (but not significantly lower) alert rate compared to Equinox 
drivers, while XTS drivers have a 37 percent higher starting alert rate. However, the change over 
odometer is 4 percent greater for SRX than Equinox and 3 percent less for XTS than Equinox. Thus, the 
starting alert rate and subsequent rate of change trade off somewhat for the Cadillacs. For Cadillac 
drivers, the alert rate in the Off setting is lower than for the Equinox (24% lower for SRX and 29% lower 
for XTS). Finally, presence of a HUD decreases alert rates by 5 percent, nighttime increases alert rates by 
2 percent, and each additional 10 percent in the proportion of a trip at speeds over 55 mph results in an 
estimated 1.5 percent decrease in alert rate.  
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Figure 18. Predicted LDW alert rates per 100 miles as a function of odometer,  
vehicle model, and setting. 

 

 We conducted a second model of alert rate over time, focused on LDW alerts that are followed 
by a lane change versus those that are not. Lane changes were determined using the same algorithm 
that was used for the FCA scenario definition (see Appendix B). All lane changes were assumed to be 
unsignaled, since by design the LDW alert is suppressed if the signal is used in the direction of the lane 
change.  

 The models of alert rate for each LDW response category were Poisson rate models at the 
vehicle level. Log odometer and lane change (yes versus no) were the predictors and the results showed 
that there was not a decrease in the alert rate for suspected lane changes. The pattern is shown in 
Figure 19. Unsignaled lane changes made up about 20 percent of alerts at low odometer readings. Like 
the rate of non-lane-change LDWs, the rate of unsignaled lane-change alerts increases over time. Even 
though the absolute slope of the increase for lane-change LDW alerts is lower than that of non-lane-
change LDW alerts, it is larger relative to the starting alert rate. As a result, the proportion of all LDWs, 
whether the system was on or off, that are categorized as unsignaled lane changes actually increases 
over odometer. 
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Figure 19. LDW alert rate as a function of odometer. Three models are shown: (1) All LDWs, (2) 
Unsignaled lane changes, and (3) Non-lane-change events. 

 

FCA 
 The Poisson rate model of FCA imminent alerts per 100 miles was developed in the same way as 
for LDW alerts. The significant predictors include log-odometer, vehicle model, age, night, setting, HUD, 
gender, and the log-odometer X setting and vehicle model X setting interactions. In contrast to LDW 
alerts, regardless of setting, the FCA alert rate decreases as the odometer increases (on the log-scale). 
Though the rate decreases when the system is turned off as well, the rate of the decrease is smaller 
(about 65% of what it when the system is on). Drivers of Cadillac models have higher alert rates overall 
than the Equinox drivers (61% higher for XTS; 38% higher for SRX), but this difference is reduced for 
those individuals with the FCA turned off (Off alert rate 23% higher for XTS; 3.5% higher for SRX). 
Inclusion of a HUD decreases the alert rate by 11 percent, male drivers have a 28 percent higher alert 
rate compared to females, and each additional decade of age decreases alert rate by 24 percent. The 
alert rate decreases by 31 percent at night, though this may reflect traffic conditions rather than system 
or behavioral changes that occur during the day. Finally, the Near setting results in a 52 percent 
reduction in alert rate and the Medium setting results in a 25 percent reduction in alert rate, but this is 
inherent in the alert timing algorithms associated with these settings. The patterns of alert rate change 
over odometer as a function of vehicle model and setting are shown in Figure 20 (Equinox), Figure 21 
(SRX), and Figure 22 (XTS). For the Cadillacs, Far and Off alert rates are similar, though they cross at 
around 10,000 miles where Off rates become higher. For the Equinox alert rates in the Off setting are 
generally higher than for Far across the entire odometer range. 
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Figure 20. Modeled FCA alert rate as a function of odometer and setting for the Equinox. 
 

 

Figure 21. Modeled FCA alert rate as a function of odometer and setting for the SRX. 
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Figure 22. Modeled FCA alert rate as a function of odometer and setting for the XTS. 
 

 We were also interested in how alert rates change within each of the seven FCA scenarios, but 
because of small counts in some categories, we modeled these changes separately and at the individual 
vehicle level. For each vehicle, alert rate within scenario was aggregated on a monthly basis, along with 
median odometer for the month. For each vehicle, the intercept and slope of alert rate over log 
odometer was calculated. The trimmed means (computed for the middle 80% of values) and medians of 
the individual slopes for each scenario are shown in Table 17. 

Table 17 Trimmed means and medians of the log-odometer coefficient for 
individual models of alert-rate change by scenario 

Alert Scenario Mean logOdo 
Coef. Value 

Median logOdo 
Coef. Value 

Overall Slope (All Scenarios) -0.196 -0.182 
Approaching Slowing Vehicle -0.056 -0.094 
Approaching Accelerating Vehicle -0.204 -0.212 
Approaching Stopped Vehicle -0.145 -0.155 
No Lateral Response, Lose Target -0.177 -0.173 
Lane Change Resolution -0.081 -0.122 
Oncoming Vehicle -0.010 -0.052 
Other -0.184 -0.197 
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 The pattern of changes in alert rates by scenario is illustrated in Figure 23. Because of the very 
different alert rates for the different scenarios, (e.g., note the extremely low alert rates associated with 
the approaching stopped vehicle and oncoming traffic scenarios), the vertical scales are not the same. 
Instead, each graph’s vertical axis extends from a rate of 0 to the median initial rate for that scenario (at 
0 odometer). Visually, the graphs show the decrease in proportion relative to the initial rate within a 
specific estimated FCA scenario. Thus, the OOP scenario (target lost—oncoming vehicle) shows almost 
no decrease over odometer, whereas approaching and accelerating in-path vehicle, approaching a 
stopped in-path vehicle, target lost—no lateral response and target lost—unknown lateral response 
decrease most (relative to the starting point). 

 

Figure 23. Graphs of median alert rate change over time by scenario. Note that the vertical axis 
scales are different across scenarios, but all range from 0 to the median initial rate.  

 

Driver Response After FCA Alert 

 For FCA, we define three post-alert response measures. First, PABT is the time of initial braking 
that occurs after the FCA imminent alert within 4 sec. For analysis, we include only PABT values between 
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0.4 sec and 3 sec after the alert. We put these constraints on response time to exclude implausibly fast 
responses (i.e., responses that are likely to have been initiated before the alert) and slow responses (i.e., 
responses that are likely to have indicated a situation that did not require urgent response). In addition, 
we include only alerts in which the accelerator pedal was On and the brake pedal was Off at alert. While 
a driver in this condition may or may not be aware of the situation, these cases are indicative of a driver 
who is not already physically initiating his/her response. 

 A second measure of post-alert response is the deceleration between the time of the alert and 4 
seconds after the alert. Average post-alert deceleration is the difference between speed at 4 sec 
following alert and speed at the time of alert onset, divided by 4. This represents the average 
deceleration achieved in the 4-sec post-alert timeframe, however it was achieved. This value is negative 
when the driver decelerates, and is measured in m/s2. (Note deceleration in g’s can be approximated by 
dividing by 10.) 

 The third response measure was a binary measure of response/non-response. Non-response 
was defined as the failure to initiate braking within 3 sec after the alert occurs. We assume that if 
braking did not occur within 3 seconds, it was not required to resolve the situation. 

 The distribution of PABT for drivers on the accelerator pedal and off the brake at alert is shown 
in Figure 24. Due to the sharp cutoff on the left, we used log(PABT) as the dependent measure for 
statistical modeling purposes.  

 

Figure 24. Distribution of post-alert braking time . 
 

 A linear mixed model was developed to predict log-transformed PABT as a function of available 
alert-level predictors. These included setting, road type, speed at event, wiper state, following distance 
at event, night/day, vehicle model, HUD, SAS, scenario, age, gender, and odometer. Age, gender, and 
odometer were not significant in this model. Interactions were also explored and three were significant: 
setting X SAS, following distance X road type, and following distance X scenario. Significant predictors 
and F tests are shown in Appendix C.  
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 Table 18 presents the mean PABT for levels of key variables. Note that because the original 
models predicted the logarithm of PABT, the means shown are the exponential of the least squares 
means of log PABT. Drivers who turned the system off were 0.09-1.12 sec slower than the response time 
for drivers who used other settings, on average. Notably, PABTs with the Off setting were just over 0.10 
sec slower than drivers who used the “matched” (same alert timing algorithm) Far setting. Across 
response scenarios, LV slowing and LV stopped elicit the fastest mean response, whereas LV 
accelerating/constant speed and all loss of LV scenarios result in mean response times of more than 1 
second. The effect of road type is that responses to alerts on major roads are faster than responses on 
minor roads. The difference between mean response time on interstates and major collectors is 0.1 
seconds. Mean response time is 0.15 sec slower when wipers are on compared to off, and night 
responses are 0.07 sec slower than daytime response on average. Finally, greater speed at time of alert 
was associated with slower PABT (approximately 0.13s longer mean response time per 10 mph 
increased speed). 

In addition, PABTs of Equinox drivers were fastest on average, followed by SRX and XTS, with a 
difference between Equinox and XTS of 0.07 seconds. Also, responses were 0.05 seconds slower when 
the HUD was used and were 0.03 seconds slower when SAS was selected. However, as noted earlier, 
relatively small differences in the FCA and LDW alert timing experienced by the driver may exist across 
vehicles due to differences in vehicle-related factors, and hence these differences should be treated 
with caution. This caveat has particular relevance to these PABT results involving Vehicle Model, HUD, 
and Alert Type (with the largest difference in means being 71 ms). 
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Table 18 Least squares means for main effects in PABT model 
Effect Level Mean PABT (s) 

Response Scenario New or No LV and Host Lane Change 1.211 
New or No LV and No Host Lateral 
Response 1.042 

New or No LV and Unknown Host 
Lateral Response 1.140 

New or No LV and LV Oncoming 1.134 
Same LV and LV Slowing 0.822 
Same LV and LV Stopped 0.844 
Same LV and LV Accelerating 1.139 

Road Type Interstate 0.991 
Principal Arterial-Freeways and 
Expressways 0.986 

Principal Arterial-Other 1.027 
Minor Arterial 1.092 
Major Collector 1.094 

Vehicle Model * SRX 1.031 
XTS 1.076 
Equinox 1.005 

Wiper Wiper On 1.115 
Wiper Off 0.964 

Time of Day Night 1.070 
Day 1.005 

HUD * Head-Up Display On 1.060 
Head-Up Display Off 1.014 

Alert Type * SAS 1.050 
Beeps 1.024 

Setting , 0.999 
Near 1.027 
Off 1.116 
Far 1.010 

Note: * Effect may be due to vehicle differences with respect to alert timing  
experienced by driver. 

 In general, longer following distances were associated with slower response time (on 
average, each 10m additional following distance predicts a 0.05s increase in response time). However, 
the specific effect is affected by interaction terms. For example, the following distance X road type 
interaction indicated that the effect was smallest for major collectors (0.05s slower response per 10m 
additional following distance) and largest for principal arterials--freeway and other (0.08s slower 
response per 10m additional following distance). The following distance X scenario interaction indicated 
that the following-distance effect was only present in scenarios where the LV was not detected to be 
present 4 seconds after the alert and the HV did not change lanes (this does not include OOP alerts) and 
scenarios where the LV was determined to have remained in path but was accelerating or at traveling at 
constant speed. For each of these, the increase in response time was a little over 0.05s per 10m 
additional following distance. Finally, the pattern of the setting by alert type interaction was such that in 
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the Off setting, where drivers do not receive alerts, drivers who select beeps (primarily Equinox drivers) 
respond 0.11s more slowly than drivers who select SAS. Since these drivers do not receive warnings at 
all, the difference may be due to demographic factors (as well as possible vehicle-related factors 
discussed above). In all other conditions, response to beeps is faster than response to SAS warnings (Far: 
05s faster for beeps; Medium: 0.04s; Near: 0.08s).  

 To focus on the two key in-path scenarios, a second model of log-PABT was run including only 
alerts in the two scenarios in which the lead vehicle was stopped or slowing and remained throughout 
the 4-sec post-alert period (Approaching Slowing Vehicle and Approach Stopped Vehicle). The modeling 
process and predictors considered were otherwise the same as the “all-scenario” model. Model 
predictors and significance tests are detailed in Appendix C. Relative to the more comprehensive model, 
the effects of speed at event, wiper, HUD and alert type are no longer significant. Scenario is also not in 
the model, but with only two scenarios and the vast majority of observations in the LV slowing scenario, 
this is not surprising. Remaining effects (significant in both models) are the main effects of setting, 
night/day, and vehicle model and the interaction between following distance and road type. 

 Table 19 shows the least squares mean PABT for the three significant main effects. As with the 
analysis of all scenarios, Equinox drivers responded fastest, followed by SRX and then XTS drivers. The 
difference between Equinox and XTS mean response time is 0.06 sec. (Again, the reader should be 
reminded this could be due to vehicle-related factors.) Responses at night are 0.09 seconds slower, and 
drivers who use the Off setting respond 0.08 seconds more slowly than those who use Far. Responses 
on the Medium setting are fastest at 0.03 sec faster than Near and 0.04 sec faster than Off. The 
following distance by road type interaction resulted in a somewhat different pattern than previously. 
Here, the main effects of both road type and following distance are not significant. However, for minor 
arterials longer following distances are associated with longer response times (similar to the previous 
pattern), but for principal arterials, the pattern is reversed. Longer following distances are associated 
with shorter response times. The magnitude of these effects depends on the specific following distance, 
but a 10-meter increase in following results in a decrease of approximately 0.05 sec on principal arterials 
and an increase of approximately 0.08 sec on minor arterials. 

Table 19 Least squares means for main effects in PABT model restricted to LV in-
path slowing or stopped scenarios 

Effect Level Mean PABT (s) 
Vehicle Model* SRX 0.741 

XTS 0.790 
Equinox 0.731 

Time of Day Night 0.811 
Day 0.701 

Setting Medium 0.709 
Near 0.737 
Off 0.827 
Far 0.747 

Note: * Effect may be due to vehicle differences with respect to alert timing  
experienced by driver. 

 A follow-up analysis of PABT focused on Off versus On (Far, Medium, or Near settings) was 
conducted to understand differences in response associated with experiencing the FCA imminent alert 



 

48 

(or not). Using only alerts in the FCA scenarios in which there was an in-path vehicle slowing or stopping, 
we modeled PABT with a linear mixed model. Setting (on versus off), road type, vehicle model, time of 
day, and the following distance by road type interactions were significant.  

 The effect of setting indicated that after adjusting for other factors, those with the system off 
responded 0.11s later than those with the system on. During the day, drivers responded 0.14s faster 
than at night (across settings), and driver response was slightly slower for the XTS compared to the 
other two vehicles. The road type by following distance interaction was significant and suggested that as 
following distance at alert increases, PABT decreases. However, the effect was only seen on interstates 
and principal arterials. 

 Average deceleration was analyzed in the same way as log PABT, using the same set of FCA 
imminent alert cases (e.g., driver’s foot was on the accelerator at the time of the alert) and initial 
predictors. Significant effects include setting, road type, response scenario, vehicle model, following 
distance, age, wiper state, and speed at alert. Scenario interacted with setting, following distance, speed 
at alert, wiper, and road type. HUD, safety alert seat, odometer and gender were not significant. 

 The pattern of the setting by scenario interaction is shown in Figure 25. The substantial main 
effect of scenario is evident such that for all settings, average deceleration in LV stopped and 
decelerating scenarios is greatest (most negative). Within scenarios, the pattern of deceleration across 
setting varies. For LV decelerating and stopped the Near and Medium settings produce the largest 
decelerations. Far and Off are equal in the LV stopped scenario and Far averages slightly greater 
deceleration in the LV decelerating scenario. In the four LV not-in-path scenarios, the Near setting 
produces the smallest deceleration and Far and Off settings have the largest average deceleration. 
However, average deceleration in all of these conditions is mild (< -0.5 m/s2 or -0.05g).  
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Figure 25. Interaction between scenario and setting for post-FCA alert average  
deceleration (m/s2) (1g=9.8 m/s2) 

 

 Equinox drivers decelerate more than SRX (0.05 m/s2 less than Equinox) and XTS drivers (0.07 
m/s2 less than Equinox). The age effect indicates a 0.02 m/s2 increase in post-alert deceleration (i.e., 
more negative values) per decade of age. 

 As with PABT, we re-ran the models using only alerts from the two key in-path scenarios: 
Approaching Slowing Vehicle and Approaching Stopped Vehicle. The same set of initial predictors was 
used, but in this analysis there are fewer significant predictors. This is due both to the reduced sample 
size and the simplification of scenarios. In particular, there are only two remaining interactions with 
scenario (suggesting that these two scenarios are more similar to each other than the larger group of 
scenarios).  

 Significant predictors include setting, road type, scenario, vehicle model, following distance, age, 
wiper, and average speed. The remaining interactions were scenario X following distance and scenario X 
speed at alert. The Near setting resulted in the highest average deceleration ( =-2.66 m/s2), following by 
Medium ( =-2.58 m/s2), Far ( =-2.45 m/s2), and Off ( =-2.47 m/s2). Deceleration was stronger (by -
0.12m/s2 or -0.012g) when the wipers were on. Deceleration responses by Equinox drivers were -0.03 
m/s2 greater (stronger deceleration) than the Cadillac drivers. For road type, Interstates and Principle 
Arterials (Freeways) produced the least severe average deceleration compared to more minor roads. 

 Both speed at alert and following distance interacted with scenario. For the LV stopped 
condition each additional 10 meters of following distance predicts 0.3 m/s2 lighter deceleration, and 
each additional 10 mph of speed at alert predicts 2.6 m/s2 stronger average deceleration. In contrast, for 
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the LV slowing condition, 10 meters of additional following distance is associated with 0.20 m/s2 
stronger deceleration, and 10 mph additional speed at alert is associated with 0.13 m/s2 stronger 
deceleration. 

 Finally, post-alert response to FCA was analyzed in terms of the extent to which drivers did not 
brake after the alert. To remind the reader, post-alert braking response was categorized as “non-
response” when the driver did not brake within 3 s after the alert and “response” otherwise. 
Furthermore, only cases where the driver was on the accelerator at the time of the alert and did not 
brake in less than 0.4s after the alert were analyzed. In addition, only the Far, Medium and Near settings 
were analyzed because the driver did not experience the alerts in the Off setting. 

 Logistic regression was used to model probability of driver non-response as a function of 
predictors. The same set of initial factors was used for model development, and the resulting model 
terms include setting following distance, road type, HUD, night, vehicle model, and LV state. Age, 
gender, speed at alert, wiper and SAS were not significant. Following distance interacted with road type. 
Scenario was reduced to five based on the behavior of the LV. These categories and their non-response 
rates are  oncoming or OOP alert (66% non-response), slowing in-path (19%), stopped in-path (24%), 
accelerating or constant-speed in-path (54%) and all others (81%). Non-response was least likely in the 
Far setting, with a 14 percent reduction in odds of non-response compared to Medium and 36 percent 
reduction in odds of non-response compared to Near. Drivers with the HUD On had a 15 percent greater 
odds of non-response than those without the HUD. Drivers were less likely to respond during the 
daytime (32% higher odds of non-response during the day). Finally, greater following distance at the 
time of the alert predicted greater non-response, but the effect was strongest on interstates and 
principal arterials. An increase of 10 m following distance was associated with a 26 percent increase in 
odds of non-response on Interstates, a 19 percent increase on Principal Arterials (Freeways), and an 8 
percent increase in the remaining road types. 

Adaptation 

 Investigation of changes over time (adaptation) focuses on using odometer as a predictor. The 
analyses in the previous section included odometer as a potential predictor, and these results were 
reported there. However, this section looks at additional changes over time. 

 One way in which adaptation might be observed is through changes in normal driving habits 
over time. To evaluate this, the following normal driving statistics were aggregated over one-month 
periods and modeled: 

• Proportion of time over left lane boundary, 

• Proportion of time over right lane boundary, and 

• Average follow distance when following. 

 The proportions were modeled using mixed effects models with a beta distribution function, 
while average following distance was modeled using linear mixed models. In additional to demographic 
predictors, the proportion of time spent using each of the settings (calculated by number of dominant 
trips divided by total trips) was also used as a predictor.  
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 After removal of non-significant predictors, the model of average following distance includes log 
odometer, setting, average following distance at start of study, SAS availability, age, and the log-
odometer by starting following distance interaction. Individuals who turned the system off have a 0.5 m 
smaller (or closer) average following distance than those who leave the system on (in any setting). 
Vehicles equipped with the safety alert seat (SRX and XTS) available tended to follow an average of 
0.89 m more closely than those without. Older drivers tend to allow a greater average following distance 
than younger drivers (about 1 m longer average following distance per decade of age). Finally, the 
starting average following distance by odometer interaction is illustrated in Figure 26 (Equinox) and 
Figure 27 (Cadillacs). The two patterns are very similar, but vary slightly because of the effect of SAS-
availability, which applies only to the Cadillacs. At low odometer settings, there is greater divergence in 
following distance among drivers in this study. However, over time, drivers converge to more similar 
following distances. Those who follow more closely at the start still follow more closely at the end (but 
by a smaller margin), and those who have the system disabled follow slightly more closely than those 
who have the system enabled (i.e., the setting main effect).  

 

 

Figure 26. Model of following distance as a function of starting following distance and setting for 
the Equinox. Three examples of starting following distance are shown for illustration. 
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Figure 27. Model of following distance as a function of starting following distance and  
setting for the Cadillac SRX and XTS. Three examples of starting following distance are  

shown for illustration. 
 

 For the model of proportion of time over the left lane boundary, significant predictors remaining 
in the model include log odometer, the proportion of total driving time the system is turned off, vehicle 
model, age, gender, and the proportion of time over the left lane at the start of the study (averaged 
over the first month of observation). There were also two interactions: log-odometer X initial time over 
left lane, log-odometer X proportion of time in Off setting, and proportion of time in Off setting X vehicle 
model. It should be noted that within any given month, 80 percent of drivers have the system always Off 
or always On. These are represented in the proportion-time-Off variable as 1 (always Off) or 0 (always 
On). Drivers who switch have proportion-time-Off values between 0 and 1.  

 The effect of age was to predict a lower proportion over the left-lane boundary by about 5.5 
percent per additional decade of age. For example, a 60-year-old driver will tend to spend about 5.5 
percent less time over the left lane than a 50-year-old driver. The gender effect predicts that male 
drivers spend about 5 percent more time over the left lane boundary than females. 

 The pattern of results for the odometer, starting proportion over left lane, proportion-time-off 
predictors are shown in Figure 28 (Equinox), Figure 29 (SRX), and Figure 30 (XTS). Starting over-left-lane 
proportion and proportion Off setting are continuous predictors (along with odometer). Thus, the 
effects are illustrated with a set of sample values. The solid lines are drivers who have the system 
enabled 100 percent of the time and the dotted lines are drivers who have the system disabled 100 
percent of the time. Starting over-left-lane proportions of 0 percent, 4 percent and 8 percent are shown 
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in black, red, and blue, respectively. It should be emphasized that starting over-left-lane values in the 
model can occur at a variety of odometer readings. That is, the starting value is measured when each 
driver enters the study, not at an odometer of 0. The graphs essentially extrapolate backwards so that 
the value of starting over-lane proportion is not the same as the predicted value over over-lane 
proportion at 0 odometer.  

 For the all vehicles, over-left-lane proportion converged over odometer to a smaller range of 
values than are observed at low odometer readings. In addition, those who have the system disabled 
tend to have a higher proportion of over-left-lane time at low odometer readings. For the Equinox, this 
difference remains throughout the odometer range. The remaining differences among drivers are 
explained by starting over-left-lane proportion, indicative of a driving style that is eventually not related 
to setting choice. 

 

 

Figure 28. Model of time spent over the left lane as a function of starting tendency to be over the 
left lane and setting for the Equinox. Three examples of starting proportion over left lane are 

shown for illustration. 
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Figure 29. Model of time spent over the left lane as a function of starting tendency to be over the 
left lane and setting for the SRX. Three examples of starting proportion over left lane are shown 

for illustration. 
 

 

Figure 30. Model of time spent over the left lane as a function of starting tendency to be over the 
left lane and setting for the XTS. Three examples of starting proportion over left lane are shown 

for illustration. 
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 A similar model was developed for the proportion of time spent over the right lane boundary. 
Since the right lane boundary is often near the road edge, whereas the left lane boundary is either a 
centerline or lane line, the two were not combined in analysis. The same set of starting predictors and 
the same modeling approach used in the previous analysis was used for the right-lane-boundary model. 
The right-lane model was somewhat simpler than the left-lane model. Significant predictors were log 
odometer, proportion of time with the LDW system Off, starting (first month of observation) proportion 
of time over the right-lane boundary, SAS-available (i.e., Cadillacs), and age. Interaction terms were also 
included for log-odometer X proportion in Off setting, log-odometer X starting over-right-lane 
proportion, and proportion in Off X SAS-available.  

 The age effect for over-right-lane proportion also indicated a reduction in over-lane proportion 
with age. The effect size is about half that of over-left-lane, predicting a reduction in proportion of time 
over right-lane boundary of about 2.5 percent per decade of age. All other effects are illustrated in 
Figure 31 (Equinox) and Figure 32 (SRX and XTS).  

 The patterns for right-lane boundary are similar to that of left-lane. Drivers with relatively higher 
starting over-lane proportions tend to reduce their over-lane proportion over time, whereas those with 
lower proportions tend to increase over time. The result is less between-driver variation at larger 
odometer readings compared to smaller ones. For Equinox, drivers who have the system Off tend to 
spend less time over the right-lane boundary. Although Cadillac drivers show the same trend, this 
difference is substantially reduced. It is also worth, more generally, that drivers generally spend more 
time over the right-lane boundary compared to the left-lane boundary. Thus, selected starting values for 
right-lane proportion are larger to illustrate a representative range of values. 

 

Figure 31. Model of time spent over the right lane as a function of starting tendency to be over the 
right lane and setting for the Equinox. Three examples of starting proportion over right lane are 

shown for illustration. 
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Figure 32. Model of time spent over the right lane as a function of starting tendency to be over the 
right lane and setting for the Cadillacs. Three examples of starting proportion over right lane are 

shown for illustration. 
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Summary and Discussion 

 This field study used an innovative large-scale data collection technique to gather information 
about how crash avoidance systems operate in the field and how drivers respond to them. Although the 
specific systems studied were the GM camera-based FCA and LDW systems, this technique could be 
readily applied to other emerging active safety systems and used to better inform emerging active 
safety consumer metrics. It should be noted that both the FCA and LDW systems evaluated have 
consistently met the Crash Avoidance New Car Assessment Program (CA NCAP) performance 
requirements since this Program was initiated. 

The telematics-based data collection technique employed harnessed the unique and powerful 
telematics capabilities of OnStar coupled with a production crash avoidance module (i.e., the Front 
Camera Module) that was specifically designed to support the type of active safety system data 
collection described in this paper focused on gathering key, high-priority numeric data. In this study, 
1,958 consenting owners of model year 13 Chevrolet Equinox, Cadillac SRX, and Cadillac XTS vehicles 
equipped with the FCA and LDW systems provided data on alert events and driving exposure over the 
course of about 1 year. Beyond the sheer amount of active safety system data collected, the geographic 
span of the data collected via this remote data collection approach was also unprecedented, as vehicles 
from 48 of the 50 States in the United States were represented in this effort.  

Data analysis was enhanced using existing highly detailed field operational test  data (e.g., 
forward looking video) at UMTRI. Thus, targeted, large-sample data collection, combined with 
information from highly detailed data, were used together to develop an efficient way to understand 
the performance of two active safety systems currently included in the NCAP Program.  

 Two general types of data were collected in the current study: (1) “snapshots” of kinematic and 
other variables 3-6 seconds before, at, and 4 seconds after either FCA imminent crash or LDW alert 
events, and (2) histograms of driving data to provide information about exposure and normal driving. In 
addition, the time of braking onset after the alert (within 4 sec of the alert) was recorded. Overall, this 
data was used to answer questions in several broad research categories: system availability, alert rates, 
driver acceptance (e.g., on/off setting choices), driver response to alerts, and driver adaptation over 
time.  

 Data analysis was enhanced by using highly detailed “traditional” field operational test  data 
previously gathered by UMTRI, as part of the NHTSA-sponsored Advanced Collision Avoidance Study 
(ACAS) FOT and FHWA-sponsored Safety Pilot efforts. These data provided an extensive set of multi-
channel video and continuously measured kinematic information, which was coupled with the current 
targeted, large-sample data collection, to develop an entirely new and efficient way to understand the 
field performance of two active safety systems. These previous FOT datasets were invaluable in 
developing some key algorithms to aid in understanding the data patterns observed with the more 
limited numeric data gathered in the present study.  

 Based on work conducted under the ACAS FOT, FCA imminent alerts were classified into 
scenarios to better understand system performance and driver behavior. We developed seven scenarios 
based on our determination using the available data of whether the LV stayed in path 4 seconds after 
the alert, the longitudinal movement state of the LV, and whether the HV steered or not. The seven 
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scenarios, as well as the estimated corresponding percentages of FCA imminent alerts observed in each 
of these scenarios, which total up to 100 percent, are shown below. 

1. Approaching slowing vehicle (19% of alerts) 
2. Approaching stopped vehicle (0.4%) 
3. Approaching slower or accelerating vehicle (31%) 
4. Oncoming traffic (considered out-of-path false alerts) (2%) 
5. Target dropped - host changes lanes (11%) 
6. Target dropped - host stays in lane (16%) 
7. Target dropped - host lane unknown (20%) 

 These scenario classification definitions were used throughout FCA analysis to understand 
context surrounding FCA imminent alerts. The first two scenarios shown above are considered key 
scenarios for preventing rear-end crashes (though it should noted that the second “Lead Vehicle 
Stopped” scenario rarely occurred). The remaining scenarios can typically be resolved with minimal 
driver response. At a high level, observed driver responses were consistent with expected responses for 
these scenarios (e.g., higher decelerations were observed when approaching a slowing or stopped 
vehicle). 

 The availability of the systems were evaluated as a portion of the time the system would be 
expected to be available based on the LDW (above 35 mph) and FCA (above 25 mph) minimum 
operating speeds. LDW system availability was primarily driven by lane confidence, whereas FCA system 
availability above was primarily driven by the presence of a detected lead vehicle. Based on system-
determined reasons for unavailability, weather and poor visibility occurred substantially less than 1 
percent of the driving time. 

 Driver behavior surrounding alerts was investigated in several ways. The On/Off setting choice 
can be thought of as the most fundamental and primary measure of driver acceptance, which interacted 
in important ways with the alert type setting. For both LDW and FCA, the Cadillac SRX and Cadillac XTS 
drivers had the option of choosing between warning beeps or haptic seat vibration pulses (referred to 
by GM as the safety alert seat), which applied to both systems.  

Cadillac drivers selected the safety alert seat (over beeps) 90 percent of the time, and when the 
haptic seat was turned on, the LDW system off time was 38 percent. For Chevrolet Equinox drivers, who 
only had the beeps option, the corresponding LDW off time nearly doubled increasing to 71 percent. 
More generally, the LDW Off time increased until leveling off at about 10,000 miles (approximately one 
year of driving). At that point, drivers generally settled on whether they left the system on or off. Drivers 
who drove more miles per month (1 sd above the mean monthly mileage) also had over 40 percent 
greater odds of system deactivation. In addition, Equinox drivers who spent more time driving over the 
right lane boundary or who drove more in the 35- to 55 mph speed range tended to turn the system off 
more.  

 For FCA, there were four setting choices (Far, Medium, and Near alert timing, as well as an Off 
setting). Overall, system off time was considerably lower for FCA than LDW, and alert type impacted off 
time in a similar fashion. When the safety alert seat was selected (rather than beeps) by Cadillac drivers, 
FCA system off time was 6 percent. For Equinox drivers (who only had beeps option), the corresponding 
FCA off time nearly tripled to 17 percent. Together with the LDW results reported above, these results 
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clearly suggest the safety alert seat increases driver acceptance of both LDW and FCA systems, which is 
further supported by the increased use of the FCA Far alert time setting for Cadillac Safety Alert users 
(72%) relative to Equinox (49%) beeps users. The Far setting was the most common setting observed 
across vehicles, followed by Medium and then Near. In general, drivers started out using the Far setting, 
explored other settings (generally from 5,000-25,000 miles), and then returned to the Far setting. Use of 
the Off setting also decreased with age. 

 Driver response to FCA imminent alerts was measured in three ways. First, post-alert braking 
time (PABT) was defined as the time between the alert and initial brake onset for cases where the 
driver’s foot was on the accelerator at the time of the alert (eliminating PABTs either below 0.4 sec or 
above 3 seconds). Second, using these same cases, average deceleration was defined as the speed 
reduction between the alert and 4 seconds after the alert, divided by the 4-second time interval. A third 
driver response measure focused on non-response, defined as the lack of any braking occurring 
between 0.4 and 3 seconds after the alert. These driver response measures were evaluated as a function 
of odometer (experience/time) and FCA scenario, and additional analysis focused on addressing the two 
key FCA in-path scenarios (e.g., lead vehicle slowing or stopped), where substantially higher 
decelerations were observed (discussed further below).  

 PABT was affected by a number of factors, with FCA setting, following distance at alert, weather 
(wiper on/off), time of day (day/night), speed at alert, and having the most significant effects. Drivers 
were 0.11s slower with the system Off compared to Far (which used the same alerting algorithm to 
record phantom alerts not presented to the driver). The corresponding difference was 0.07s for the two 
key in-path FCA scenarios. For context, a vehicle travels about 1 ft per 10 mph in 0.07s (e.g., 7 ft at 70 
mph, 6 ft at 60 mph). Responses were about 0.13s slower for every 10 mph increase in speed at alert 
and about 0.05s slower for every 10m increase in following distance at alert. In poor weather conditions 
(wipers on), responses were 0.07s slower to all scenarios and 0.11s slower in the two key scenarios, 
compared to when wipers were off. The same effect sizes were seen for night versus day. Thus, in 
conditions of poorer visibility, braking responses were slower.  

 For driver braking (average acceleration) levels following an alert, alert scenario was the 
strongest predictor. Although this scenario effect interacted with both following distance and vehicle 
speed, in general, the two key in-path alert scenarios resulted in much greater deceleration (averaging 
approximately 2.0m/s2 or 0.20 g) than the remaining scenarios (averaging below 0.5 m/s2 or 0.05 g). For 
these scenarios, setting was a significant predictor of average deceleration, but observed differences 
were a relatively small 0.2 m/s2 between settings. Consistent with the observed PABT data, poor 
visibility (having the wipers on) led to stronger average decelerations (0.12 m/s2 higher). For the lead 
vehicle stopped FCA scenario, every 10 mph increase in speed at alert resulted in 2.6 m/s2 higher 
average deceleration levels, whereas for the LV braking scenario, every 10 mph increase in speed at 
alert resulted in 0.13 m/s2 higher average deceleration levels.  

 Driver non-response levels are shown below for the FCA scenarios identified.  

1. Approaching slowing vehicle (19%) 
2. Approaching stopped vehicle (24%) 
3. Approaching vehicle moving at slower (but not braking) or accelerating (54%) 
4. Oncoming traffic (considered out-of-path false alerts) (66%) 
5. Remaining scenarios (target lost after 4 sec) (81%) 
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 Thus, the driver non-response levels were highest for conditions in which the lead vehicle was 
estimated to be not present 4 seconds after the alert, or when present but accelerating at the 4 sec 
post-alert time. In some cases of non-response for these two conditions, the driver may have coasted 
rather than braking to manage the situation. 

 Overall, system alert rates were higher when the system was off relative to a matched system-
on condition (i.e., for LDW the On setting, for FCA the Far alert timing setting), and LDW alerts occurred 
markedly more often than either FCA headway or FCA imminent alerts. Median LDW alert, FCA headway 
alert, and FCA imminent alert rates (per 100 miles) were 29 percent, 18 percent, and 19 percent higher 
when the crash avoidance system was OFF rather than ON. Median LDW alert rates for the On and Off 
setting were 37.4 and 48.4 per 100 miles respectively. Median FCA headway alert rates for the Off, Far, 
Medium, and Near settings were 9.6, 8.1, 2.4, and 0.17 per 100 miles respectively. Median FCA 
imminent alert rates for the Off, Far, Medium, and Near settings were 1.3, 1.1, 0.75, and 0.54 per 100 
miles respectively. (Note that the pattern of decreasing FCA alert rates as alert timing increases from 
Near to Far setting is expected based on the FCA alert timing algorithms.)  

 Relative to previous traditional active safety FOT efforts, one of the particular strengths of this 
study was the ability to look at changes in data patterns over a considerably longer period (e.g., about 1 
year instead of 6 weeks) for a larger sample of drivers (e.g., 2,000 instead of 100). Overall, there was no 
substantial evidence of unintended consequences due to driver adaptation. As odometer (and hence 
time) increased, whether or not the system was turned on, alerts rates went up for LDW and down for 
FCA, with the FCA reduction dependent on the estimated FCA scenarios. As would be expected, 
oncoming vehicle (out-of-path) alert rates did not change over time, since these alerts are largely out of 
the driver’s control. In contrast, alerts to lead vehicles that are accelerating or stopped, and alerts where 
the lead vehicle was lost but the host vehicle did not change lanes or the driver’s lane position was 
unknown decreased the most. These could be argued to be scenarios that the driver can anticipate and 
perhaps can adapt to avoid setting off the FCA. In the two key in-path FCA scenarios described above 
(where a lead vehicle remaining present), alert rates decreased somewhat as odometer increased.  

 Finally, changes in normal driving behavior over time (odometer) was examined in terms of 
following distance and time spent over the left lane and right lane boundaries. Overall, drivers who 
started with more extreme following distances (short or long, relative to other drivers) or percent of 
time spent over either lane boundary tended to become more like an average driver over time. This 
suggests an effect of getting used to the vehicle rather than an effect of the system itself.  

 In summary, this new telematics-based, large-scale OnStar data collection technique has several 
distinct strengths for evaluating active safety systems, including cost, sample size, drivers using their 
own vehicles where they can turn systems off, ability to look at long-term effects, data efficiency, and 
the ability to get “rapid-turnaround” large-scale results. Since this technique currently focuses on key 
high-priority numeric data, it complements and benefits from the extensive set of multi-channel video 
and continuously measured kinematic information gathered in “traditional” FOTs. This new type of 
telematics-based data collection appears ideally suited for understanding the safety impacts of active 
safety (crash avoidance) systems that are rapidly emerging globally. 
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Appendix A Data Collection 

Types of Collected Data 

Two types of data were collected for each ignition cycle (or trip) from each vehicle: the alert-triggered 
data and trip-aggregated statistics data.  

The alert-triggered data contain a wide range of information describing alert situations such as 
kinematics of the subject vehicle and lead vehicle, safety system settings, pedal positions, lane position, 
and lead vehicle type. The alert-triggered data were sampled at three discrete time points, 3-6 s prior to 
the alert event, at the alert time, and 4 s after the alert time. The varying time difference between the 
pre-alert and alert times was due to the update timings of two buffers which temporarily held data as 
potential pre-alert data. Each buffer was updated every 6 s with an offset of 3 s from the other buffer, 
and the pre-alert data were obtained from the one carrying the older data to avoid missing data during 
the updating process. The alert-triggered data also contained the information of driver response to an 
alert signal (e.g., brake initiation), which occurred between the alert and post-alert times such as brake. 
There are maximum numbers of alerts that can be recorded in each trip (three for FCA imminent alert 
events and five for LDW alert events). The alert queue was created based on the First-In, First-Out (FIFO) 
method, and therefore only the newest alerts were stored if the number of alerts exceeded the 
maximum allowed. 

The trip-aggregated statistics data are comprised of two types of data: periodic counters and event-
based counters. The periodic counters represent durations of particular states in a single ignition cycle, 
e.g., vehicle speed, system settings, lane offset and others. These counters were incremented by one at 
1 Hz of sampling rate. Some groups of the periodic counters form histograms, e.g., durations of time for 
vehicle speed in different speed ranges under certain conditions. On the other hand, the event-based 
counters represent the numbers of occurrences of discrete events, e.g., number of alerts. 

Data Delivery and Processing 

Both of the alert-triggered data and trip-aggregated statistics data were temporarily stored in each 
vehicle in internal memory in the FCM. In about every four ignition cycles, those data were wirelessly 
transferred to the OnStar server when the ignition was turned on. The collected data were delivered 
online to UMTRI typically four times a day at 12 A.M., 6 A.M., 12 p.m., and 6 p.m. in the comma-
separated value (csv) format. The delivered data was parsed and stored in a relational database in 
Microsoft SQL Server on an UMTRI server.  

Collected Data Used to Support Data Analysis 

The database contains three main tables for the analyses: TTripStats, TAlerts, and TCounters, which 
contain trip summary data, the alert-triggered data, and the trip-aggregated statistics data, respectively. 
These tables also contain additional variables that were derived from the original data such as time of 
day, which was converted from Greenwich Mean Time (GMT) converted to the local time. Detailed 
descriptions for these tables are provided in the tables below.  

In these tables, the single star (*) indicates that the data was used only in the initial data processing. 
Derived data is indicated by a (D). 
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Summary Table (TTripStats) 

Table 20 Data in TTripStats 
Field name Description Unit 

FileID File ID in the order of file delivery to UMTRI - 

RowInFile (*) Row number to specify the data location in the original data 
file - 

VehicleID Anonymized vehicle ID - 
TripStart Trip start time in Greenwich Mean Time (GMT) date/time 
TripEnd Trip end time in GMT date/time 
StartOdo Odometer value at TripStart km 
EndOdo Odometer value at TripEnd km 
cnt_total Duration of trip from the Trip Statistics table s 
DurationSeconds (D) Duration of trip (difference between TripStart and TripEnd) s 
InvalidCode (D) Validity type - 
EndSunElevation (D) Sun elevation relative to the vehicle position at TripEnd deg 

StartTimeZone (D) Local time zone at TripStart: Alaska, Central, Eastern, Hawaii-
Aleutian, Mountain, or Pacific - 

StartGMT_OFFSET (*) 
(D) 

Offset of local time from GMT at TripStart during regular 
(non-daylight saving) time period hour 

StartGMT_DST_OF 
(*)(D) 

Offset of local time from GMT at TripStart during daylight 
saving time period hour 

StartLocalTimeOfDay 
(D) 

Local start time adjusted from TripStart using 
StartGMT_OFFSET or StartGMT_DST_OF date/time 

EndTimeZone (D) Local time zone at TripEnd: Alaska, Central, Eastern, Hawaii-
Aleutian, Mountain, or Pacific - 

EndGMT_OFFSET 
(*)(D) 

Offset of local time from GMT at TripEnd during regular (non-
daylight saving) time period hour 

EndGMT_DST_OF 
(*)(D) 

Offset of local time from GMT at TripEnd during daylight 
saving time hour 

EndLocalTimeOfDay 
(D) 

Local start time adjusted from TripEnd using 
EndGMT_OFFSET or EndGMT_DST_OF date/time 

 

Alert Event Table (TAlerts) 

Table 21 shows a list of variables which provides summary information of alerts available in TAlerts, and 
Table 22 contains the rest of the variables in TAlerts to represent the driving situation in detail at the 
distinct time points around the alert time. In the TAlerts table, each row corresponds to a single alert, 
and therefore multiple rows can be associated with the same trip. 

Table 21 Summary of alert events 
Field name Description Unit 

VehicleID Anonymized vehicle ID - 
TripStart Trip start time in GMT date/time 
TripEnd Trip end time in GMT date/time 
StartOdo Odometer value at trip start km 
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Field name Description Unit 
EndOdo Odometer value at trip end km 
InvalidCode (D) Validity type - 
FileID File ID in the order of file delivery to UMTRI - 
RowInFile (*) Row number to specify the data location in the .csv file - 
 Number of alerts that occur in a proximity in the last 4 

weeks 
- 

AlertTime (*) Time of alert in GMT data/time 
LocalTimeOfDay (D) Time of alert in local time data/time 
F_SYSTEM (D) Functional System classifying into road type - 
 Distance between the locations at TripStart and AlertTime mile 
SunElevation (D) Sun elevation relative to the vehicle location at alert time deg 
SunAzimuth (D) Sun azimuth relative to the vehicle heading at alert time deg 
TimeZone (D) Local time zone at alert time: Alaska, Central, Eastern, 

Hawaii-Aleutian, Mountain, or Pacific 
- 

GMT_OFFSET (*)(D) Offset of local time from GMT at alert time during regular 
(non-daylight saving) time period 

hour 

GMT_DST_OF (*)(D) Offset of local time from GMT at alert time during daylight 
saving time period 

hour 

Hit_Miss Distance between the alert location and the closest 
polyline in the road data 

m 

VehicleID Version of road data used in the GIS analysis year 
TripStart Annual average daily traffic - 
TripEnd Length of the road segment in the road data in which an 

alert occurred 
mile 

StartOdo Vehicle miles traveled in a specified road segment mile 
EndOdo Flag to indicate if a road segment associated with an alert 

is found within the tolerance range 
- 

 

Table 22 Detailed information of alert events 

Field name Sampling 
time Description Unit 

Timer Pre, Alert & 
Post Time showing age of trip s 

AlertWarning Pre, Alert & 
Post 

FCA state (0: No alert, 1: 
Reserved, 2: Headway alert, 
3: Imminent alert) 

- 

LdwLocation Pre, Alert & 
Post 

LDW state (0: No alert, 1: 
Left, 2: Right) - 

AvgSpeed Pre, Alert & 
Post Vehicle speed km/h 

AccelPosition Pre, Alert & 
Post Accelerator position - 

BrakePedalInitial Pre, Alert  Driver brake switch (onset 
flag) - 
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Field name Sampling 
time Description Unit 

BrakePosition Pre, Alert  Driver brake position (0-100) - 

TurnSignal Pre, Alert & 
Post 

Turn signal status (0: Off, 1: 
Left, 2: Right) - 

FollowDistance Pre, Alert & 
Post Range to target m 

LeftLanePos Pre, Alert & 
Post Left lane position m 

RightLanePos Pre, Alert & 
Post Right lane position m 

LeftLaneConf Pre, Alert & 
Post 

Left lane tracking confidence 
(0: Low1, 1: Low2, 2: 
Medium, 3: High) 

- 

RightLaneConf Pre, Alert & 
Post 

Right lane tracking 
confidence (0: Low1, 1: 
Low2, 2: Medium, 3: High) 

- 

Hours (*) Alert Only GPS time (hours) hour 
Minutes (*) Alert Only GPS time (minutes) min 
Seconds (*) Alert Only GPS time (seconds) s 
HoursValid (*) Alert Only GPS time validity (hours) - 
MinutesValid (*) Alert Only GPS time validity (minutes) - 
SecondsValid (*) Alert Only GPS time validity (seconds) - 
Wiper Alert Only Wiper flag (0: Off, 1: On) - 

TimeBrkPedAchvd 
During 4 s 
period after 
Alert 

Time brake is activated 
(initial) s 

 
 

Trip Statistics Table (TCounters) 

The structure of TCounters table is shown in Table 23. Since the Name field contain a large number of 
counters (365 in total), their corresponding values were stored in the Value field in order to avoid an 
overly large number of columns in the table. 

Table 24 and Table 25 provide descriptions of the counters in Name for the periodic-counters and event-
based counters, respectively. These counter variables include not only counters, per se, but also 
histograms. There are one- and two-dimensional histograms. Many counters address the time that a 
particular state exists, e.g., time spent within a speed bin. These counters including the histograms 
(counters within bins) are incremented once a second (frequency of 1 Hz). Counters addressing alert 
event occurrences, however, simply count the number of those events. 

Since many counters are similar with slight differences, comprehensive representations are used for 
their names. The italic symbols, a, b, c, and, d represent the variables which take different values 
between a particular counter and another counter of the same kind, and the combinations of the values 
for the four variables are defined in the second column in the tables. 
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Table 23 Trip Statistics (Structure of TCounters table) 
Field Name Description Unit 

FileID File ID in the order of file delivery to UMTRI - 
VehicleID Anonymized vehicle ID - 
TripStart Trip start time in Greenwich Mean Time (GMT) date/time 
TripEnd Trip end time in GMT date/time 
StartOdo Odometer value at TripStart km 
EndOdo Odometer value at TripEnd km 
Name Name of counter variables - 
ByteNum (*) Byte location to specify a particular counter - 
Value Value of the counter variable - 

RowInFile (*) Row number to specify the data location in the 
original data file - 

InvalidCode Validity type - 
 

Table 24 Counter variables in the Name field in TCounters (periodic counters or 
histograms) 

Counter name Description Frequency 
[Hz] 

cnt_v_a_b_nocipv 

Histogram of duration of time without a target (closest-
in-path vehicle) in host vehicle speed bins, [a, b) mph, 
where (a, b)  {(0, 5), (5, 15), (15, 25), (25, 35), (35, 45), 
(45, 55), (55, 65), (65, 75), (75, 85), (85, 95), (95, 255)}  

1 

cnt_v_a_b_cipv 

Histogram of duration of time with a target (closest-in-
path vehicle) in host vehicle speed bins, [a, b) mph, 
where (a, b)  {(0, 5), (5, 15), (15, 25), (25, 35), (35, 45), 
(45, 55), (55, 65), (65, 75), (75, 85), (85, 95), (95, 255)}  

1 

cnt_v_a_b_x_c_d 

Histogram of duration of time of the target range in 
bins, [c, d) m, in host vehicle speed bins, [a, b) mph, for 
the combinations defined by the direct product, (a, b)  
(c, d), where (a, b)  {(0, 20), (20, 25), (25, 30), (30, 35), 
(35, 40), (40, 45), (45, 50), (50, 255)} and (c, d)  {(0, 5), 
(5, 10), (10, 15), (15, 20), (20, 25), (25, 30), (30, 35), (35, 
40), (40, 50), (50, 60), (60, 70), (70, 80), (80, 90), (90, 
100), (100, 255)} 

1 

cnt_v_a_b_wiper_on 
Histogram of duration of time of wiper activated in 
speed bins, [a, b) mph, where (a, b)  {(0, 25), (25, 45), 
(45, 65), (65, 85), (85, 255)} 

1 

cnt_v_a_b_FCA_headwayalert 
Histogram of duration of time of headway alert in 
speed bins, [a, b) mph, where (a, b)  {(0, 25), (25, 45), 
(45, 55), (55, 65), (65, 75), (75, 85), (85, 255)} 

1 

cnt_vehiclesdetected_a 
Histogram of duration of time of the number of 
vehicles detected, a, where a  {0, 1, 2, 3, 4, 5, 6, 7} 

1 
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Counter name Description Frequency 
[Hz] 

cnt_v_a_b_leftconf_c 

Histogram of duration of time of left lane tracking 
confidence at c in speed bins, [a, b) mph, for the 
combinations defined by the direct product, (a, b)  c, 
where (a, b)  {(0, 25), (25, 45), (45, 55), (55, 65), (65, 
75), (75, 85), (85, 255)} and c  {0, 1, 2, 3} 

1 

cnt_v_a_b_rightconf_c 

Histogram of duration of time of right lane tracking 
confidence at c in speed bins, [a, b) mph, for the 
combinations defined by the direct product, (a, b)  c, 
where (a, b)  {(0, 25), (25, 45), (45, 55), (55, 65), (65, 
75), (75, 85), (85, 255)} and c  {0, 1, 2, 3} 

1 

cnt_LDW_State_a 
Histogram of duration of time of LDW state at a, where 
a  {‘Off’, ‘Disabled’, ‘NRTA’, ‘RTA’, ‘Blocked’, 
‘Unknown’} 

1 

cnt_FCA_State_a 
Histogram of duration of time of FCA state at a, where 
a  {‘Off’, ‘Disabled’, ‘NRTA’, ‘RTA’, ‘Blocked’, 
‘Unknown’} 

1 

cnt_FDI_State_a 
Histogram of duration of time of FDI state at a, where a 

 {‘Disabled’, ‘NRTA’, ‘RTA’ } 
1 

cnt_LDW_on Histogram of duration of time of LDW on 1 
cnt_FCA_on Histogram of duration of time of FCA on 1 
cnt_FCA_near Histogram of duration of time of FCA Near 1 
cnt_FCA_medium Histogram of duration of time of FCA Medium 1 
cnt_FCA_far Histogram of duration of time of FCA Far 1 

cnt_leftlaneoffset_a_b 

Histogram of duration of time of distance between the 
left lane boundary and FCM camera in bins, [a, b), 
where (a, b)  {(−1, −0.8), (−0.8, −0.6), (−0.6, −0.4), 
(−0.4, −0.2), (−0.2, 0), (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.6, 
0.8), (0.8, 1)} m. 

1 

cnt_rightlaneoffset_a_b 

Histogram of duration of time of distance between the 
right lane boundary and FCM camera in bins, [a, b), 
where (a, b)  {(−1, −0.8), (−0.8, −0.6), (−0.6, −0.4), 
(−0.4, −0.2), (−0.2, 0), (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.6, 
0.8), (0.8, 1)} m. 

1 

cnt_v_a_b_LDW_NRTA_c 

Histogram of duration of time of LDW NRTA Bit c in 
speed bins, [a, b) mph, for the combinations defined by 
the direct product, (a, b)  c, where (a, b)  {(0, 25), 
(25, 45), (45, 55), (55, 65), (65, 75), (75, 85), (85, 255)} 
and c  {0, 1, 2, 3, 4, 5}.  

LDW NRTA reason bit 

0 – speed under threshold 

1 – adverse weather 

1 
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Counter name Description Frequency 
[Hz] 

2 – low visibility 

3 – left lane position invalid 

4 – right lane position invalid, and 

5 – single lane performance 

cnt_v_a_b_FCA_NRTA_c (**) 

Histogram of duration of time of FCA NRTA Bit c in 
speed bins, [a, b) mph, for the combinations defined by 
the direct product, (a, b)  c, where (a, b)  {(0, 25), 
(25, 45), (45, 55), (55, 65), (65, 75), (75, 85), (85, 255)} 
and c  {0, 1, 2, 3}.  

FCA NRTA reason bit 

0 – speed under threshold, 

1 – adverse weather, 

2 – low visibility, and 

3 – speed above threshold (no limit for the vehicles in 
this study) 

1 

cnt_total Duration of time of total trip length 1 
cnt_chimealertselected Duration of time of “beep” alert type setting 1 
cnt_hapticalertselected Duration of time of “seat” alert type setting 1 

 
 

Table 25 Counter variables in the Name field in TCounters (event-based counters) 
Counter name Description 

cnt_LDW_Left_Alert Number of left LDW alert in a trip 
cnt_LDW_Right_Alert Number of right LDW alert in a trip 

cnt_LDW-inhibit_a 
Number of LDW inhibitions for the reason, a, where a  
{‘steeringwheelrate’, ‘rightturnsignalactive’, ‘leftturnsignalactive’, 
‘curvecutting’, ‘brake’, ‘acceleration’, ‘any’} 

cnt_FCA_headwayalert Number of FCA headway alerts in a trip 
cnt_FCA_collisionalert Number of FCA imminent alerts in a trip 
cnt_FCA_suppression_a (**) Number of FCA suppressions for the reason bit, a = 1, 2, …, 15. 

 
Unexpected Data Issues 

 Of the parsed data, some variables were unavailable, corrupted, or unsuitable for the analysis 
due to low resolution. Workarounds were found for some of them by fixing erroneous values or using 
alternative variables. If there was no workaround, relevant data were not used. A list of such data issues 
is shown in Table 26. 
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Table 26 Unexpected Data Issues Encountered 

Signal Issue Use Workaround Approach 

FCA not ready to assist 
counter 

False zeros Availability None 

Invalid GPS data 
Out of feasible 
range 

Location identification N/A 

Longitudinal acceleration No data 
Characterizing conflict, driver 
braking response 

Average acceleration from 
speed data 

Min & max yaw rate and 
lateral acceleration after 
alert 

Miscoded 
Steering response, lane 
change 

Used position in lane to 
predict type of steering 
response (lane change or 
not) 

Odometer 
Odometer 
decrease 

Analyzing trip, computing 
conflict rate 

N/A 

Relative acceleration of 
forward target 

Invalid values Characterizing conflict 
Average acceleration from 
speed data 

Relative speed of forward 
target 

Upper bits 
overwritten 

Characterizing conflict, driver 
braking response 

Values reconstructed 

Trip duration counter 
Delayed 
activation 

Analyzing trip N/A 
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Appendix B Details of Algorithms to Aid Analysis  

Appendix B presents details of the analysis done with the OnStar data to derive the results presented in 
earlier sections of this report. The techniques and analysis approach for some of the OnStar results were 
validated and enhanced using other UMTRI naturalistic driving datasets that, unlike the current data set, 
include continuous time-series data along with time-synchronized video of the forward scene and 
driver/cabin environment and in some data sets, video of the space adjacent to the host vehicle on the 
right and left. The two primary archives used in this effort were the Automotive Collision Avoidance 
System (ACAS) FOT and Safety Pilot Model Deployment datasets. The ACAS FOT dataset was used 
because it has a detailed analysis of forward collision alert events. In this effort, trained researchers 
reviewed video of every FCA imminent alert to classify them into different scenarios, and similar 
scenarios were used in this analysis. The Safety Pilot dataset was selected because the vehicles are 
privately owned (like in the current study) and are equipped with a similar forward-scene ranging and 
lane-tracking sensor as deployed in the current study. A description of how these archives were used to 
support the results shown here is given below, along with details of how the OnStar data were 
processed to support the findings and conclusions presented in the main body of this report. 

Safety Pilot Naturalistic Driving Field Operational Test Data Analysis 

The Safety Pilot Model Deployment (SPMD) project was intended to explore how well connected 
(wireless) vehicle safety technologies and systems work in a real-life environment with real drivers using 
their own vehicles. Over 2800 vehicles and 29 infrastructure sites (mainly signalized intersections) were 
instrumented with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless technology. One 
hundred twenty-eight of the 2,800 vehicles had more elaborate warning systems and were 
instrumented with the UMTRI Data Acquisition System (DAS). The majority of these vehicles were 
passenger cars, although buses, tractor-semis, and motorcycles were also included in this enhanced set. 
The analysis below on lateral and forward conflict events is restricted to only passenger vehicles to 
better allow comparisons to the current study. 

Data Content 

To provide context to the quantity, breadth, scope of data and video collected in the Safety Pilot Model 
Deployment Field Operational Test (FOT—which is currently ongoing as of this report), the following 
subsections provides an overall summary of the naturalistic driving database from Safety Pilot, while the 
subsequent subsection discusses the sensors used to collect the measures (since there are similarities 
between the systems deployed in Safety Pilot and the production sensors and systems examined in the 
current study.)  

Exposure Summary 
Driving data collected in the SPMD falls into two broad categories, namely, V2V basic safety messages 
(BSMs) and the enhanced driving dataset collected by the UMTRI DAS. The BSM dataset contains time 
and basic GPS position information as detailed in the SAE J2735 DSRC specification. For the analysis 
related to the current study, only the enhanced driving database was used. A broad description and 
summary of the distance and time travelled, number of trips, and overall database size is given in Figure 
33. Of note is the comprehensive list of measures recorded by the UMTRI DAS and described in the 
upper part of the figure along with the fact that as of late 2014 over 2 million miles and almost 80,000 
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hours of naturalistic driving are in the main SPMD database. Nominally, the time-series data in this 
archive is captured and stored at 10 Hz. Also of note in the figure, the database contains 25 principal 
tables that constitute over 18 billion records. There is over 16 terabytes of continuous video to support 
the objective time-series measures.  

 

 

 

Figure 33. Safety Pilot Model Deployment Exposure Summary 

UMTRI DAS and Associated Sensor Suite 
For SPMD a major component of the sensor suite install on all vehicles (except motorcycles) with the 
UMTRI DAS, is a Mobileye (ME) vision-based ranging sensor. This sensor is a mono-camera based 
machine vision technology that uses vision recognition algorithms to “interpret” a scene and derive 
information that is critical in the design and implementation of Advanced Driver Assistance Systems 
(ADAS). MobilEye is a supplier of this technology for production automotive crash warning products, 
including GM, Volvo, and BMW.  

A requirement in SPMD was to install a forward-facing ranging sensor on all vehicles equipped with the 
UMTRI DAS. The purpose of this sensor is to provide information about the forward scene such as the 
number of same and opposing direction vehicles, the relative distance and speed of other vehicles, and 
relative location of vehicles with reference to the host vehicle. Additionally, an autonomous ranging 
sensor also adds to the general usefulness of the data archive collected during SPMD by giving 
researchers a wealth of information about the vehicular environment in front of the host vehicle at all 
times. These data are used to study the intra-vehicle dynamics between the host vehicle and other 
vehicles in its path and can be used to derive surrogate measures of traffic density. Combined with the 
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host vehicle state, ranging sensor measures can be used derive longitudinal measures of the lead vehicle 
such as speed, implied brake status, and longitudinal acceleration. Finally, the MobilEye sensor also 
tracks lane boundary markers and provides measures of the host-vehicles position with respect to a lane 
markers. These measures, although not a requirement for DAS equipped vehicles, are very useful and 
were used to complement and enhance the current analysis. Details are given below. 

The fact that the SPMD dataset contains measures derived from a sensor similar to the same measures 
in the current dataset was the most compelling reason to use this data set over other readily available 
data sets at UMTRI, like Integrated Vehicle-Based Safety Systems (IVBSS used a radar as its ranging 
sensor) or road departure crash warning (RDCW).  

Lane Departures and Lane Changes 

The first steps toward leveraging the SPMD data in the analysis of the current data in terms of LDW was 
to define and identify similar lateral events in the SPMD. To do this analysis there were two main tasks:  

a) Identifying lane departure events—the start of which is defined as the lateral offset distance 
(the distance between the ME camera and the boundary) indicates that a wheel has touched or 
crossed the boundary but the vehicle centerline never crosses the same boundary (i.e., the 
lateral distance between the ME camera and the adjacent lane boundary has not reached zero). 
The end of lane departure events is defined as the offset distance indicating the same wheel has 
return to the original lane.  

b) Identifying lane change events—similar to lane departure events only now the lateral distance 
does indicate that the vehicle centerline has crossed the boundary. For an example and 
illustration of the lane change, see the section below on the lane change algorithm. A summary 
of the lane-changes from SPMD is given below. 

Lane Departure Events 
The procedure to find lane departure events in the SPMD data uses lane-offset distance and lane-offset 
confidence measures reported by the ME sensor. Lane-offset distance is ME estimate of the distance 
between the lane boundary and the ME camera/center of the vehicle (if the camera is offset from the 
lateral centerline of the vehicle a correction is applied by the sensor to the offset). Lane-offset distance 
is measured for lane boundaries to the right and left of the vehicle. Similarly, lane-offset confidence is 
calculated for both the left and right offset distance measures. All lane departures have direction either 
to the left or right (with respect to the driver orientation). A lane departure to the left starts when the 
left front wheel (closest to the camera) reaches or crosses the boundary on the left and ends when that 
same wheel returns to inside of the original lane. The corresponding definition is the same for a right 
departure. For all lane departures from SPMD the lane-offset confidence in the direction of the 
departure is “high.” For each lane departure the following measures are captured. 

1. The direction of the departure (1=left; 2 = right) 
2. The start and end time of the departure (hence its duration) 
3. The maximum distance of the departure relative to the front wheel. For example, for a left 

departure, a distance of 0.2 m indicates that the left wheel crossed the boundary on the left and 
then travelled laterally an additional 0.2 m before the distance decreased and the wheel 
returned to inside the original lane boundary. 

4. The boundary type that was crossed (Dashed, Solid, Double, etc.) 
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Table 27 shows the distribution of lane-departure event counts from SPMD for passenger cars as a 
function of lane boundary type. A total of 613,859 lane departure events where used in the analysis of 
the current data. Also shown in the table is the average maximum distance of a lane departure as 
function of boundary type.  

Table 27 Safety Pilot Lane-departure Summary 

 
Count Max. Distance, m 

 
Left Right Left Right 

Dashed 31,330 56,640 0.19 0.20 
Solid 154,164 248,404 0.16 0.22 
Undecided 1,283 3,294 0.25 0.27 
Double 113,712 4,904 0.21 0.19 
Botts Dots 59 69 0.20 0.20 
All 300,548 313,311 0.18 0.21 

Lane-change Events 
Appling the lane-change algorithm (explained below) to passenger cars in the SPMD dataset, a total of 
378,187 lane changes were identified. Table 28 shows how these lane-changes are distributed left and 
right and as a function of the boundary type crossed. The table also gives average estimates of the 
lateral rate of lane-changes. Here lateral rate is defined as an average vehicle track width (1.8 m) divided 
by the amount of time it takes for both front wheels to cross the lane boundary.  

Table 28 Safety Pilot Lane-change Summary 

 
Count Lateral Rate, m/s 

 
Left Right Left Right 

Dashed 123,555 162,087 0.68 0.68 
Solid 29,555 20,674 0.61 0.64 
Undecided 5,720 2,578 0.42 0.50 
Double 30,947 2,815 0.62 0.53 
Botts Dots 126 130 0.70 0.70 
All 189,903 188,284 0.65 0.67 

Lane-change Algorithm 
To identify, and operationally define lane-changes for use in the current dataset, in the SPMD, the 
following algorithm was developed. Consider Figure 34, which shows time-series data of the four 
measures used in the algorithm. Two of the measures are offset distances, which is the estimated 
distance from the boundary to the sensor (camera in this case) to the left and right. The other two 
measures are an estimate of the quality of this distance estimate. For this algorithm, the quality 
measures should be high (value of 2 or 3) for both the left and right offset distance at the time of the 
lane change. In the example, the left quality measure is a value of 3, while the right starts at a value of 2 
and then changes to 3 when the lane change occurs as shown in the center plot of the figure. 

Given high quality, the algorithm is based on a large change in the offset estimate for both the right and 
left offset measures which occurs when the sensor crosses over the lane-boundary line and the system 
switches to monitoring the new lane boundary markers on the left and right. In the example, which is a 
lane-change to the right, consider the upper plot. It shows the right offset distance approaching 0 m at 
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around 4 seconds, while the left offset distance approaches -3.6 m (or the width of the lane), then at the 
time of the crossing (4.1 s), the offset values transition (large step function) to monitoring the boundary 
lines in the new lane, meaning the right offset values becomes 3.6 m while the left offset value is 0 m. 
To identify the lane-change event the algorithm simply takes the difference between the current right 
and left lane offset value and the corresponding previous offset value and if the absolute value of this 
difference is greater than a tolerance value of 2 m the event is flagged as a lane-change. This 
comparison of the current and previous offset values (for right and left, respectively) is illustrated in the 
bottom plot of the figure. The direction of the lane change is determined by the sign of the difference 
calculation. A negative value for the difference in both right and left offset is a lane-change to the right, 
a positive value is a lane-change to the left. 
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Figure 34. Identifying Lane-Changes with Offset and Quality Measures from Safety Pilot FOT 
 

Forward Conflict Events 

The SPMD dataset includes FCA events but they are based on the longitudinal conflict measures derived 
from the wireless V2V messages exchanged between the host (following) and lead vehicle. To develop 
FCA events that are similar to those from the current dataset the MobilEye ranging sensor data had to 
processed to derive common metrics that are often associated with assessing longitudinal conflicts 
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found in rear-end type crash scenarios. These were derived for the closest-in-path-vehicle (CIPV) and the 
metrics include: 

• Lead vehicle (LV) Speed (defined as host speed + range-rate), 
• LV Longitudinal Acceleration (LVAx: time derivative of LV speed), 
• Time-Gap or Headway (Th: Range / Host Speed), 
• Simple Time-to-collision (TTC: -Range-rate/Range), and 
• Required deceleration (DecelAvoid: constant level of deceleration needed for the host vehicle to 

avoid a collision assuming current kinematics continue). 

The algorithm used to identify pseudo-FCA imminent alert events in the SPMD data using these conflict 
metrics used the following definitions for three cases. For a stopped lead vehicle, the following must all 
hold the following. 

• HV Speed > 11. 2 m/s 
• CIPV = 1 
• LV Speed between -1.0 and 1.0 m/s 
• Range < 65 m 
• TTC < 3.5 s 
• Criteria persistence of 0.3 or more consecutive seconds 

For a close lead vehicle, all the following conditions must hold. 

• HV Speed > 11. 2 m/s 
• CIPV = 1 
• LV Speed > 1.0 m/s 
• Range < 10 m 
• DecelAvoid < -0.5 m/s2 
• TTC < 14 s 
• Criteria persistence of 0.5 or more consecutive seconds 

If neither the stopped or the close lead vehicle cases hold, the conditions for which a psuedo FCA event 
is defined in the general case is that all of the following hold. 

• HV Speed > 11. 2 m/s 
• CIPV = 1 
• LV Speed > 1.0 m/s 
• Range < 65 m 
• DecelAvoid < -3.0 m/s2 
• TTC < 14 s 
• Criteria persistence of 0.5 or more consecutive seconds 

The results of this processing identified 26,413 FCA events in the SPMD dataset. These events were 
subsequently used to populate a table with similar measures to the current dataset using the same time 
window surrounding the events. Next, conditional algorithms were developed on this subset of the 
SPMD data. These algorithms were then modified by reviewing the SPMD video around the FCA in order 
to classify and group them into different scenarios. These same conditional algorithms were then 
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applied to the current dataset to form and operationally define the scenario categories that look at the 
host-vehicle response in terms of lead vehicle persistence and host vehicle longitudinal and lateral 
response to the forward conflict.  

OnStar FCA Scenario Classification 

A significant portion of the current data analysis was undertaken to classify the FCA into a set of 
scenarios for analysis purposes. Previous work, by UMTRI, GM, and other organizations has been 
undertaken to categorize the complex interactions that can occur between a host and lead vehicle in 
FCA-relevant longitudinal conflicts that might result in a crash. Two major inter-related areas of conflict 
research are algorithm/metric development and scenario classification.  

Algorithm development implies deriving meaningful measures that represent the level of conflict and 
crash threat urgency between vehicles, especially as conceived by the driver. In many cases, the 
measures need to match the same level of immediacy that a vigilant driver would feel if they experience 
the same driving situation. In other cases, these measures need to reflect high conflict situations when 
even an attentive driver may not perceive the immediate sense of conflict. For example, in high-speed 
situations, if there is considerable range between two vehicles and the lead vehicle does an unlikely, 
aggressive braking maneuver, the driver of the following vehicle may not perceive the immediacy of the 
conflict due to the longer distance between the vehicles. This is not the case with accurate ranging 
sensors that can “see” and measure relative speed, and use that information prompt the driver 
attention to a higher level of awareness.  

Scenario classification involves grouping similar conflict events in order to decide which measure best 
represents the complexities of the conflict. In short, scenario classification, is the conditional statements 
in an FCA decision tree that decides which rules are going to work best to estimate the classification of a 
a current situation. In this research, using the current dataset, scenario classification and conflict metric 
derivation were undertaken to attempt to more fully understand how a production FCA system 
performs under a wide range of naturalistic driving situations across a wide geographic span. The 
categories and general rules of FCA imminent alert scenario classification, based on information 
reported by the forward-looking camera sensor, included: 

• Same, new or no lead Vehicle — In cases where the post-event range value was reported to be 
zero, this indicated that no LV was reported by the forward-looking sensor at the 4-sec post-
alert event time. To determine if the same LV was reported to be persistent at the post-event 
time each of the following three rules had to be satisfied (if any of these rules fail, the LV was 
considered “new”): 

1. If an estimated final range (based on the range at the time of the event and an 
average range-rate—measured at event and 4 s later) was within 5 meters of 
the actual final range, and  

2. If the estimated acceleration of the LV between event and post-event was 
within acceptable thresholds 

3. If the final LV speed was between -1 and 40 m/s, than the LV was considered 
persistent 

• In the case with the same LV after 4 seconds: 
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o Host vehicle (HV) responding to a slowing LV—if the estimated average acceleration of 
the LV was less than -0.55 m/s2, then the LV was considered slowing. The threshold 
value was derived from an analysis of the distribution of average host vehicle 
acceleration values where an inflection point was found at this threshold. This value is 
intended to represent the difference between a coasting event without foundation 
brakes and a slowing event with the foundation brakes. The host vehicle deceleration 
distribution is shown in Table 33. 

o Host vehicle responding to a stopped LV—If the speed of the LV was estimated to be 
between -1.5 and 1.5 m/s the LV was considered stopped. 

o Host vehicle responding to a constant speed or accelerating LV—all other cases, the LV 
was considered constant speed or accelerating.  

• In the case where there was estimated to be a new or no LV after 4 seconds the following rules 
were used to classify scenarios: 

o Oncoming LV —if the estimated derived speed of the LV was determined to be less than 
-1.5 m/s, then the LV was considered oncoming (in oncoming situations, range-rate is 
less than zero and its absolute value is greater than the host vehicle speed). 

o Host vehicle performs a lane change—lane changes by the HV were estimated by 
analyzing the lane change and lane departure results from the Safety Pilot Model 
Deployment FOT. The derivation of these events was covered earlier in this section. By 
structuring the SPMD data similar to the current data, and looking at the difference in 
lane-offset between event and post-event, the two distributions shown in Figure 34 
were derived. This figure shows the absolute difference between lane offset at alert 
even and post-alert event lane offset along the x-axis. The solid lines represent the 
fraction of data points in each distribution (the left y-axis), while the dashed lines are 
the cumulative fraction of data points (right y-axis). This figure shows a clear distinction 
between the lane change (shown in red) and the lane departure distribution (shown in 
blue). For estimated offset change values between 0 and 0.5 m there is a 90 percent 
chance of a lane departure, while for values more than 0.5 m there is 95 percent chance 
of a lane change. A similar analysis was done with the SPMD FCA events, and although 
the two distributions are not as distinct, they do follow the same pattern and have a 
similar crossing values of 0.5 m. Also, note that although the figure only shows left 
offset values, using right lane offset values was also found to give the same 
distributions. Based on these distributions, the HV was flagged (or operationally 
defined) as making a lane change if the estimated change in lane-offset (right or left) 
was more than 0.5 m. 

o Host vehicle does not perform a lane change or is unknown 
1. LV Turns or makes a lane change—in cases where the HV data indicates 

detected lane boundary markers at event and post-event and it is shown that 
the Lane-offset is estimated to be less than 0.5 m, it is assumed that the HV 
does not change lanes, and since the LV does not have persistence, it is assumed 
that the longitudinal conflict is resolved by the LV either clearing the HV path by 
turning, making a lane-change, or following a path that is orthogonal to the HV 
path.  
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2. Unknown—this category captures the remaining FCA imminent alert events that 
do not fall into the ones described above. In these events, the lane offset 
measures are unreliable either due to low reported confidence or estimated 
values that are not typical of normal lane geometry, i.e., values not between 0 
and 3.6 m. 
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Figure 35. Distribution of average host vehicle acceleration between the FCA and post-event times. 

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Fr
ac

tio
n 

of
 d

at
a 

po
in

ts

3.63.22.82.42.01.61.20.80.40.0

Absolute difference between Event Lane Offset and Post-Event Lane Offset, m

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

C
um

m
ulative fraction of data points

 Lane Change Left (N=223846)
 Lane Departure Left (N=332914)

 

Figure 36. Left lane-offset change for lane change and departure events from Safety Pilot 
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Appendix C Data Analysis Details 

 Research questions are numbered according to the data analysis plan written at the beginning 
of the project. In some cases, questions have been combined into a single analysis. 

SQ1:  What is the distribution of system availability (rate per time), and how does it vary by 
speed? 

Method: Availability rates were calculated per unit of time, as aggregated within vehicle (across trips). 
These rates include only driving at speeds above the set threshold for each system. A histogram of 
overall rates were constructed. In addition, the general reason for any unavailability were tabulated. All 
of these measures represent descriptive statistics on the sample. 

Constraints (filtering): For LDW, only samples at speeds greater than 35 mph were used. For FCA, only 
samples at speeds greater than 25 mph with a target present were used.  

Results: First, the availability (ready-to-assist or RTA) rates are explained. Since the systems are always 
unavailable under the set speed thresholds, the analysis of the availability rate was conducted for the 
speed ranges greater than the threshold in which the safety benefits could be anticipated. Moreover, 
FCA is available only when a target is detected ahead in the same lane as the host vehicle (i.e., closest in 
path vehicle or CIPV).  

Figure 37 and Figure 38 show histograms of the average RTA rates per vehicle for LDW and FCA, 
respectively, for each vehicle model. Their characteristics are very similar regardless of vehicle model. 
The median rates are about 80  percent for LDW and 90  percent for FCA; SRX shows a slightly higher 
availability rate compared to the other models in both systems. The long-tailed distributions to the left 
indicate that some vehicles were rarely travelling below the minimum operating speed of the LDW or 
FCA system and the average system availability rate is significantly vehicle-dependent. 

Note: The RTA data are stored in single valued counters, and a classification by speed bins is not 
available. However, since RTA does not occur at speed under the threshold, simply using the speed 
range above the threshold for the denominator of the fraction gives the rate of RTA above that 
threshold. (As mentioned above, the CIPV condition is also required, so the speed counters for the case 
in which a CIPV exists are used.) 
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Figure 37. Availability rate of LDW 
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Figure 38. Availability rate of FCA 

 



 

83 

Next, the unavailability (NRTA) rates are investigated. For each of LDW and FCA, there is a set of reasons 
which cause NRTA - Table 29 summarizes it along with the associated bitmap indices (see Appendix A). 
There are six reasons for LDW NRTA and five for FCA NRTA including an additional reason that is not 
assigned a bitmap index, “a closest-in-path vehicle not detected.” If NRTA occurs for multiple reasons at 
the same time, both reasons are recorded in the respective counters, and therefore the sum of those 
counters for all the unavailability reasons can be greater than the total driving time. 

Table 29 Reasons for the system unavailability 
Bit LDW FCA 
0 Speed under threshold (35 mph) Speed under threshold (25 mph) 
1 Adverse weather Adverse weather 
2 Low visibility Low visibility 
3 Invalid left lane position Speed above threshold (25 mph) 
4 Invalid right lane position 

 5 Single lane performance 
 Closest-in-path vehicle not detected 

 

Figure 39 to Figure 44 show the histograms of LDW NRTA rate, and Figure 45 to Figure 47 those of FCA 
NRTA rate. As a general remark, the FCA NRTA data contain erroneous values as can be seen from 
unreasonably small rates even for the Bit 0 reason (Figure 39) which should have given ideally a 100 
percent of unavailability rate in the speed range between 0 and 25 mph. On the other hand, the shape 
of each FCA histogram or the relative proportions across different speed bins within the same histogram 
is reasonable; the shapes for Bit 0, 1, and 2 are comparable to the LDW counterparts and there is no 
data for Bit 3, which is reasonable. In addition, the occasional inconsistent peaks such as the ones in 
Figure 46 are due to a small number of samples. 

Two comments regarding the LDW NRTA histograms are made here: (1) for Bit 0 the NRTA rate for the 
speed range, [25, 45) mph is approximately 50  percent because the speed threshold (35 mph) is located 
at the midpoint of the range; and (2) for Bit 3 and 4, the rates becomes smaller as the speed becomes 
higher, which implies that different road types are involved in the different speed ranges, e.g., 
residential area for the first speed bin, the next two or three bins for other surface road, and the higher 
speed bins for highways. 
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Figure 39. Unavailability rate of LDW (Bit 0: Speed under threshold) 
 



 

85 

 

Figure 40. Unavailability rate of LDW (Bit 1: Adverse weather) 
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Figure 41. Unavailability rate of LDW (Bit 2: Low visibility) 
 



 

87 

 

Figure 42. Unavailability rate of LDW (Bit 3: Invalid left lane position) 
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Figure 43. Unavailability rate of LDW (Bit 4: Invalid right lane position) 
 



 

89 

 

Figure 44. Unavailability rate of LDW (Bit 5: Single lane performance) 
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Figure 45. Unavailability rate of FCA (Bit 0: Speed under threshold) 
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Figure 46. Unavailability rate of FCA (Bit 1: Adverse weather) 
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Figure 47. Unavailability rate of FCA (Bit 2: Low visibility) 
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BQ1/AQ2:  (BQ1) How does the system setting vary by time of day, month of study, and 
vehicle mileage? (AQ2) How do system settings change over time within-vehicle?  

Method: The focus of this analysis is driver selection of FCA or LDW setting as a function of time and trip 
characteristics. Each trip was classified by the majority setting on the trip, evaluated using the 
appropriate system counters, and the models were based on an underlying multinomial (FCA) or logistic 
(LDW) distributions. Other predictors were limited to those measures that are available at the trip level.  

The model form for FCA (multinomial) is in Equation 1 and the model form for LDW (logistic regression) 
is in Equation 2. 

 (1) 

where s = system setting, i = cluster (month in vehicle), j = individual trip 

 (2) 

where s = system setting, i = cluster (month in vehicle), j = individual trip 

 

Predictor candidates were: 

• Trip distance (miles), 

• Day/Night status at the end of the trip (differentiated by civil dusk), 

• Fraction of trip at high speeds (55mph+), 

• Odometer (miles; linear and quadratic or logarithmic), 

• Age (years), 

• Gender, 

• Vehicle Model, and 

• HUD presence. 

Each vehicle’s odometer is treated as the time variable, allowing for different drivers to accumulate 
experience with the system at different rates over the course of the study. Two-way interactions 
between effects with significant main effects were also considered for the model. 

 Modeling was done in SAS using GEE in Proc GENMOD. To define clustering, the data were 
organized by month nested within each vehicle. The month component was included to account for 
climate and other time affected variables that were not directly captured by the odometer reading. 

 Piecewise odometer models were considered in addition to the linear-quadratic and logarithmic 
scaling. These piecewise models were constructed using both scaling methods, and transition points 
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from 8,000 to 14,000 miles were considered. Candidate models were compared using the Quasi-AIC 
(QIC) calculated by SAS. The smallest QIC of the models considered was achieved for odometer on the 
logarithmic scale with a piecewise structure at 10,850 miles. This is consistent with the observed trends 
and was used in the final LDW model. 

Constraints (filtering): The BQ1/AQ2 analysis does not meaningfully restrict the data except in situations 
where there are incomplete records.  

Results - FCA: Table 30 shows the multinomial model for FCA setting, which consists of three sub-
models that describe the odds of setting the FCA to one of the other three settings as opposed to Far. 
Positive coefficients indicate an increase in settings other than Far. Only significant effects and main 
effects that are components of interactions were retained in the model. The main effect of vehicle 
model indicated differences between each of the models, including the two Cadillacs (z = -2.51, 
p=0.0120). Thus, all three vehicle models were included in the interaction terms as well. However, for 
the interaction terms, the Cadillacs do not differ from each other; instead the significant interactions are 
driven by differences between the Equinox and the Cadillacs.  

Table 30 GEE multinomial model of FCA trip setting choice as a function of trip, 
vehicle, and demographic predictors 

  Off versus Far (ref.) 
Effect Coefficient Std. Error EXP(Coef.) z-score p-value 
Intercept -0.5186 0.1714 0.5954 -3.03 0.0025 
EndOdometer/5,000 0.1734 0.0214 1.1893 8.08 <.0001 
(EndOdometer/5,000)**2 -0.0070 0.0009 0.9930 -8.09 <.0001 
Fraction of Trip at 55mph+ -0.2806 0.055 0.7553 -5.1 <.0001 
Age  -0.0219 0.0021 0.9783 -10.67 <.0001 
Gender - Male           
VehicleModel - SRX -1.0779 0.2002 0.3403 -5.38 <.0001 
VehicleModel - XTS -0.5043 0.1948 0.6039 -2.59 0.0096 
Trip Distance (miles)           
HUD Available - Yes -5.232 0.8887 0.0053 -5.89 <.0001 
Night - Sun Elev. < -6 0.0674 0.0334 1.0697 2.02 0.0433 
Linear Odometer * SRX -0.1019 0.0388 0.9031 -2.63 0.0086 
Linear Odometer * XTS -0.1578 0.0322 0.8540 -4.9 <.0001 
Quad. Odometer * SRX 0.0041 0.0016 0.0041 2.57 0.0103 
Quad. Odometer * XTS 0.0064 0.0011 1.0064 5.56 <.0001 
Age * HUD 0.0729 0.0127 1.0756 5.75 <.0001 
Night * SRX -0.3175 0.0662 0.7280 -4.8 <.0001 
Night * XTS -0.2788 0.0687 0.7567 -4.06 <.0001 
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  Near versus Far (ref.) 
Effect Coefficient Std. Error EXP(Coef.) z-score p-value 
Intercept -0.8971 0.1311 0.4078 -6.84 <.0001 
EndOdometer/5,000 0.0188 0.0040 1.0190 4.66 <.0001 
(EndOdometer/5,000)**2           
Fraction of Trip at 55mph+           
Age  -0.0072 0.0019 0.9928 -3.86 0.0001 
Gender - Male           
VehicleModel - SRX -1.3216 0.064 0.2667 -20.66 <.0001 
VehicleModel - XTS -0.922 0.0581 0.3977 -15.86 <.0001 
Trip Distance (miles)           
HUD Available - Yes           
Night - Sun Elev. < -6           
  Medium versus Far (ref.) 
Effect Coefficient Std. Error EXP(Coef.) z-score p-value 
Intercept -0.7435 0.1204 0.4754 -6.18 <.0001 
EndOdometer/5,000 0.0644 0.0105 1.0665 6.13 <.0001 
(EndOdometer/5,000)**2 -0.0024 0.0004 0.9976 -5.97 <.0001 
Fraction of Trip at 55mph+ -0.1842 0.0415 0.8318 -4.44 <.0001 
Age  -0.0044 0.0015 0.9956 -2.84 0.0045 
Gender - Male           
VehicleModel - SRX -0.8371 0.0476 0.4330 -17.59 <.0001 
VehicleModel - XTS -0.7282 0.0491 0.4828 -14.84 <.0001 
Trip Distance (miles)           
HUD Available - Yes           
Night - Sun Elev. < -6           

 

To illustrate, Figure 48 through Figure 50 show the modeled effect of odometer on FCA setting. These 
plots assume the following: Female driver, average prop. over 55 mph (0.08), avg. age by vehicle (Equ: 
58, SRX: 60, XTS: 66), avg. LDW count (4), trip ends before dusk. 
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Figure 48. Modeled and observed proportion of trips in each FCA setting by odometer for Equinox. 

 

Figure 49. Modeled and observed proportion of trips in each FCA setting by odometer for SRX. 
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Figure 50. Modeled and observed proportion of trips in each FCA setting by odometer for XTS. 
 

Results – LDW: The GEE model for LDW is shown in Table 31. Positive coefficients indicate increasing 
probability of turning the system Off. 

Table 31 GEE model coefficients and significance tests predicting LDW 
predominantly Off for a given trip 

Effect Coefficient Std. Error EXP(Coef.) z-score p-value 
Intercept -3.4146 0.3913 0.0329 -8.73 <.0001 
log(End Odometer) : 0-N 0.5473 0.0432 1.7286 12.66 <.0001 
log(End Odometer) : N+           
Fraction of Trip at 55mph+ -0.517 0.0477 0.5963 -10.83 <.0001 
LDW Alerts on Trip 0.0377 0.0012 1.0384 30.14 <.0001 
Age -0.0088 0.0012 0.9912 -7.45 <.0001 
Gender - Male -0.1138 0.0563 0.8924 -2.02 0.0432 
VehicleModel - SRX 0.5333 0.5385 1.7045 0.99 0.322 
VehicleModel - XTS 2.3198 0.5007 10.1736 4.63 <.0001 
Trip Distance (miles) -1.4988 0.0654 0.2234 -22.9 <.0001 
HUD Available - Yes 0.1311 0.0444 1.1401 2.95 0.0031 
Night - Sun Elev. < -6 0.1708 0.0268 1.1863 6.36 <.0001 
Early Odometer * SRX -0.2331 0.0613 0.7921 -3.8 0.0001 
Early Odometer * XTS -0.4061 0.057 0.6662 -7.13 <.0001 
Night * SRX -0.2404 0.0373 0.7863 -6.45 <.0001 
Night * XTS -0.1263 0.0365 0.8814 -3.46 0.0005 
Gender - Male * SRX 0.2941 0.0763 1.3419 3.85 0.0001 
Gender - Male * XTS 0.2315 0.0732 1.2605 3.16 0.0016 
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To illustrate, Figure 51 shows the modeled effect of odometer on LDW Off setting. This plots assume the 
following: Female driver, average prop. over 55 mph (0.08), avg. age by vehicle (Equ: 58, SRX: 60, XTS: 
66), avg. LDW count (4), trip ends before dusk. 

 

Figure 51. Modeled and observed proportion of LDW off by odometer. 
 

BQ2:  How does the system setting vary by distribution of normal driving behavior (in terms of 
speed, following distance, etc.)? 

Method: The normal driving statistics were created using the available counter data collected by the 
OnStar system over the course of the study. These counters were aggregated over the entire course of 
the study giving one value per counter per individual. These counters were then used to create a 
number of descriptive statistics to describe driving behavior. These were: 

• Proportion of time over left lane boundary,4 

• Proportion of time over right lane boundary,5 

• Proportion of time driving under 35 mph (reference), between 35 mph and 55 mph or over 

55 mph,  

                                                            
4 Calculated as proportion of the time when lane boundary confidence is high that the center of the vehicle is 
within 1m of the left lane boundary. 
5 Calculated as proportion of the time when lane boundary confidence is high that the center of the vehicle is 
within 1m of the right lane boundary. 
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• Proportion of time following another vehicle, 

• Average follow distance when following,6 

• Average monthly miles, and 

• Preferred haptic setting (on/off). 

The normal driving statistics were standardized to increase interpretability of effect sizes. Additional 
demographic information was used for prediction, including driver age and gender, vehicle model and 
HUD availability. 

The response was assumed to be multinomial (FCA) or binomial (LDW) with the number of trips taken 
serving as the exposure. Each trip is categorized according to the dominant FCA and LDW setting over 
the course of the trip, creating the response. 

The multinomial (FCA) model form is shown in Equation 3 and the binomial (LDW) form is shown in 
Equation 4. 

 (3) 

where s = system setting and i = vehicle 

 (4) 

where s = system setting and i = vehicle 

Constraints (filtering): There was no substantial filtering for BQ2, except where required by the 
unavailability of data. 

                                                            
6 Calculated using histogram data collected by OnStar. The center-point of each histogram bin was used to 
determine the ‘distance’ value for the time spent in that bin. 



 

100 

Results - FCA: The FCA model, shown in Table 32, consists of three sub-models. Positive coefficients 
indicate a greater probability of using settings other than Far (specific setting depends on the sub-
model). 

Table 32 GEE multinomial model of FCA trip setting choice as a function of 
normal-driver predictors 

  Off versus Far (ref) 

Parameter Coefficient 
Std. 
Error Exp(Coef.) 

Wald Chi-
sq. 

p-
value 

Intercept -0.0883 0.2806 0.9155 0.0991 0.7529 
Prop. Following           
Age -0.0173 0.0048 0.9828 12.9530 0.0003 
SRX/XTS -1.3454 0.1372 0.2604 96.1210 <.0001 
Willliam's Method - Scale 0.834001 

      Near versus Far (ref) 

Parameter Coefficient 
Std. 
Error Exp(Coef.) 

Wald Chi-
sq. 

p-
value 

Intercept -0.3734 0.2684 0.6884 1.9355 0.0164 
Prop. Following           
Age -0.0115 0.00451 0.9886 6.5332 0.0106 
Model SRX -1.3429 0.1583 0.2611 71.9695 <.0001 
Model XTS -0.8097 0.1465 0.4450 30.5378 <.0001 
Willliam's Method - Scale 0.805968 

      Medium versus Far (ref) 

Parameter Coefficient 
Std. 
Error Exp(Coef.)     

Intercept -0.5717 0.0762 0.5646 56.2876 <.0001 
Prop. Following 0.2623 0.0744 1.2999 12.4356 0.0004 
Age           
SRX/XTS -0.9062 0.1001 0.4041 81.8992 <.0004 
Prop. Fol. * Haptic Avail -0.2789 0.1003 0.7566 7.7235 0.0055 
Willliam's Method - Scale 0.765724 
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Results - LDW: The LDW model is shown in Table 33. Positive coefficients indicate increased tendency to 
turn the system Off. 

Table 33 GEE model coefficients and significance tests predicting LDW 
predominantly Off for a trip based on normal-driving descriptors at the  

vehicle level 
Using Available Alert Options + Interactions 

Parameter Coefficient 
Std. 
Error Exp(Coef.) Wald Chi-sq. p-value 

Intercept 0.7291 0.0677 2.0732 116.045 <.0001 
Over Left Lane Prop.           
Over Right Lane Prop. 0.3624 0.0764 1.4368 22.4876 <.0001 
Prop. Speed in 35-55 0.3914 0.0743 1.4791 27.7826 <.0001 
Prop. Speed 55+           
Prop. Following           
Avg. Follow Dist. -0.0899 0.0385 0.9140 5.4685 0.0194 
Avg. Monthly Miles 0.3490 0.0642 1.4176 29.586 <.0001 
Gender - Male           
SAS - Available -0.6858 0.1631 0.5037 17.6831 <.0001 
HUD - Available 0.2267 0.1106 1.2545 4.2007 0.0404 
Alert Setting - SAS -0.6372 0.1533 0.5288 17.2862 <.0001 
Over Left * SAS           
Over Right * SAS -0.2863 0.0907 0.7510 9.9586 0.0016 
Prop Speed 35-55*SAS -0.3348 0.0891 0.7155 14.1094 0.0002 
Avg. Mon. Mi * SAS -0.2526 0.0808 0.7768 9.782 0.0018 
Williams Method – Scale 0.614971 

     

BQ3/AQ1:  (BQ3) How do alert rates vary by condition (e.g., light/dark, speed) and setting? 
(AQ1) How do alert rates change over time within-vehicle? 

Method: For LDW, the investigation of alert rate was performed at the trip level, and focused on FCA 
imminent collision alerts and LDW alerts (to the left and right jointly). The rate was modeled using a 
Poisson rate model taking the trip distance in hundreds of miles as the exposure.  

The model form is shown in Equation 5. 

 

 (5) 

where i = cluster (month in vehicle), j = trip, d = trip distance 

For modeling individual FCA alert categories, the number of alerts of each type were aggregated over 
each month of the study. This data was then regressed for each vehicle. Exposure was evaluated in the 
same way as the initial modeling. 
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Constraints (filtering): Any trips that were less than 1 mile (Ending Odometer - Starting Odometer) were 
omitted. 

Results - FCA: The Poisson model of FCA alert rate is shown in Table 34. Positive coefficients are 
associated with increases in alert rate.  

Table 34 Model parameters for Poisson model of FCA alert rate.  

Parameter Estimate 
Std. 
Error EXP(Coef.) 

Z - 
Score P-Value 

Intercept 3.7317 0.1106 41.7500 33.74 <.0001 
Log (Odometer) -0.2275 0.0114 0.7965 -19.90 <.0001 
Vehicle Model - XTS 0.4757 0.0285 1.6091 16.69 <.0001 
Vehicle Model - SRX 0.3236 0.0231 1.3821 14.04 <.0001 
Age -0.0274 0.0006 0.9730 -43.64 <.0001 
Night = Sun Elev. <= -6 deg -0.3688 0.0148 0.6916 -24.85 <.0001 
Prop. Trip > 55 mph           
FCA Setting - Off -0.4994 0.2624 0.6069 -1.90 0.057 
FCA Setting - Near -0.7271 0.0276 0.4833 -26.32 <.0001 
FCA Setting - Medium -0.2872 0.0227 0.7504 -12.65 <.0001 
HUD -0.1164 0.0284 0.8901 -4.10 <.0001 
Gender - Male 0.246 0.0186 1.2789 13.23 <.0001 
ln Odometer * Off 0.0835 0.0288 1.0871 2.89 0.0038 
Model XTS * FCA - Off -0.2657 0.0488 0.7667 -5.45 <.0001 
Model XTS * FCA - Near           
Model XTS * FCA - Mid           
Model SRX * FCA - Off -0.2891 0.0483 0.7489 -5.99 <.0001 
Model SRX * FCA - Near           
Model SRX * FCA - Mid           

 

Results - LDW: The Poisson model of LDW alert rate is shown in Table 35. Positive coefficients are 
associated with increases in alert rate. 
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Table 35 Model parameters for Poisson model of LDW alert rate. 
Parameter Estimate Std. Error EXP(Coef.) Z-value p-value 
Intercept 2.5655 0.1372 13.0072 18.70 <.0001 
LOG(Odometer) 0.1271 0.0153 1.1355 8.33 <.0001 
Vehicle Model - SRX -0.1639 0.1569 0.8488 -1.04 0.2962 
Vehicle Model - XTS 0.3153 0.1659 1.3707 1.90 0.0573 
Age / 10           
Gender - Male           
Prop. Trip > 55 mph -0.1315 0.0108 0.8768 -12.12 <.0001 
Night (Sun Elev. <= -6 deg) 0.0218 0.0058 1.0220 3.74 0.0002 
LDW Setting - Off 0.8606 0.1287 2.3646 6.69 <.0001 
HUD -0.0535 0.018 0.9479 -2.97 0.003 
Log Odometer * LDW Off -0.032 0.0142 0.9685 -2.25 0.0243 
Model - SRX * LDW Off -0.2708 0.0228 0.7628 -11.89 <.0001 
Model - XTS * LDW Off -0.3465 0.0231 0.7072 -14.99 <.0001 
Log Odo. * Model - SRX 0.0404 0.0175 1.0412 2.31 0.0209 
Log Odo. * Model - XTS -0.0361 0.0185 0.9645 -1.95 0.0509 

 

BQ4:  What is the overall distribution of Post-Alert Braking Time ? How does PABT vary by 
condition (e.g., road type, light/dark, speed) and setting? 

PABT is measured to within 50 milliseconds and is captured at initial brake travel. This time does not 
necessarily represent a response to the alert itself; it instead more accurately represents a response that 
occurred after the alert was issued. In some cases, no braking may occur. 

Method: Linear mixed models were used to model PABT, which was transformed logarithmically to 
improve normality of the residuals. Predictors included: setting, road type, speed at event, wiper state, 
following distance at event, night/day, vehicle model, HUD, SAS, scenario, age, gender, and odometer. 
Age, gender, and odometer were not significant in this model. Interactions were explored and three 
were significant: setting X SAS, following distance X road type, and following distance X scenario.  

The linear mixed model form is shown in Equation 6. 

 (6) 

where i = vehicle, j = alert 

Constraints (filtering): The events are identified by searching through the data for episodes in which the 
constraints in Table 36 apply. 
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Table 36 Analysis Constraints 
Constraints 

1. Post-Alert Brake Reaction Time between 0.4 to 3 s 
2. Imminent alerts  
3. No LDW warning at the same time. 
4. Acceleration On at event  
5. Lead vehicle ahead 
6. Same lead vehicle (Part – 2) 
7. Stopped or slowing lead vehicle (Part – 2)  

 

 

Results: The mixed model of log PABT is shown in Table 38 with least squares means of categorical 
predictors shown in Table 38. Note that means shown are in log units. 

Table 37 Predictors of Post-Alert Braking Time   
Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Setting 3 12E3 11.05 <.0001 

Road Type 4 12E3 4.42 0.0014 

Speed at Event 1 12E3 338.11 <.0001 

Wiper 1 12E3 10.12 0.0015 

Following Distance at Event 1 12E3 4.08 0.0435 

Night 1 12E3 25.47 <.0001 

Vehicle Model 2 12E3 6.35 0.0018 

Head-Up Display 1 12E3 6.54 0.0106 

Setting*SAS 3 12E3 4.86 0.0022 

SAS 1 12E3 1.04 0.3088 

Following Distance*Road 
Type 

4 12E3 2.56 0.0369 

FCA Scenario 6 12E3 11.15 <.0001 

Following Distance*FCA 
Scenario 

6 12E3 3.58 0.0015 
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Table 38 Least squares means for model of PABT 
Effect Variable Level Variable 

Level 
Estimate Standard 

Error 
DF t Value Pr > 

|t| 

Intercept     -0.08732 0.06005 1659 -1.45 0.1461 
Setting Off  0.03883 0.02879 12E3 1.35 0.1774 
Setting Near  0.0405 0.03165 12E3 1.28 0.2008 
Setting Medium  -0.00874 0.01741 12E3 -0.5 0.6159 
Setting Far  0 . . . . 
Road Type Interstate   -0.1437 0.04188 12E3 -3.43 0.0006 
Road Type Principal 

Arterial-
Freeways and 
Expressways 

  -0.1664 0.04811 12E3 -3.46 0.0005 

Road Type Principal 
Arterial-Other 

  -0.122 0.03535 12E3 -3.45 0.0006 

Road Type Minor Arterial   -0.1083 0.03809 12E3 -2.84 0.0045 

Road Type Major Collector   0 . . . . 

Speed MPH_MPH     0.008379 0.000398 12E3 21.05 <.0001 

Wiper Wiper Off   -0.1575 0.04695 12E3 -3.35 0.0008 
Wiper Wiper On   0 . . . . 
Following 
Distance 

    0.004107 0.001314 12E3 3.13 0.0018 

Time of Day Day   -0.07181 0.01275 12E3 -5.63 <.0001 
Time of Day Night   0 . . . . 
Vehicle Model Equinox   -0.09632 0.02502 12E3 -3.85 0.0001 

Vehicle Model SRX   -0.0443 0.01434 12E3 -3.09 0.002 

Vehicle Model XTS   0 . . . . 

HUD Head-up 
display Off 

  -0.04248 0.01792 12E3 -2.37 0.0178 

HUD Head-up 
display On 

  0 . . . . 

Setting*Alert 
Type 

Off Chime 0.09597 0.04059 12E3 2.36 0.0181 

Setting*Alert 
Type 

Off Haptic 0 . . . . 

Setting*Alert 
Type 

Near Chime -0.07062 0.04851 12E3 -1.46 0.1455 

Setting*Alert 
Type 

Near Haptic 0 . . . . 

Setting*Alert 
Type 

Medium Chime -0.03403 0.03247 12E3 -1.05 0.2946 

Setting*Alert 
Type 

Medium Haptic 0 . . . . 
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Setting*Alert 
Type 

Far Chime -0.04912 0.02132 12E3 -2.3 0.0212 

Setting*Alert 
Type 

Far Haptic 0 . . . . 

Alert Type Chime  0 . . . . 

Alert Type Haptic  0 . . . . 

Following 
Distance*Road 
Type 

Interstate   0.001645 0.001769 12E3 0.93 0.3523 

Following 
Distance*Road 
Type 

Principal 
Arterial-
Freeways and 
Expressways 

  0.002756 0.002006 12E3 1.37 0.1694 

Following 
Distance*Road 
Type 

Principal 
Arterial-Other 

  0.002444 0.001484 12E3 1.65 0.0997 

Following 
Distance*Road 
Type 

Minor Arterial   0.004774 0.001595 12E3 2.99 0.0028 

Following 
Distance*Road 
Type 

Major Collector   0 . . . . 

 

A second model focused on two scenarios: LV slowing or stopped and remaining after 4 seconds. This 
model is shown in Table 39 with least squares means shown in Table 40. 

Table 39 Predictors of Post Alert Braking Time  for FCA imminent alert scenarios 
when LV is estimated to be slowing or stopped 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Setting 3 1182 4.6 0.0033 
Road Type 4 1182 1.59 0.1744 

Following Distance 1 1182 0.28 0.599 
Night 1 1182 23.77  <.0001 

Vehicle Model 2 1182 5.87 0.0029 
Following Distance*Road Type 4 1182 2.79 0.0252 
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Table 40 Predictors of Post Alert Braking Time  for FCA imminent alert 
Effect Variable Level Estimate Standard 

Error 
DF t Value Pr > 

|t| 
Intercept   -0.1442 0.08616 903 -1.67 0.0945 
Setting Off 0.1018 0.03515 1182 2.9 0.0039 
Setting Near -0.01337 0.0533 1182 -0.25 0.8019 
Setting Medium -0.05276 0.02848 1182 -1.85 0.0642 
Setting Far 0 . . . . 
Road Type Interstate -0.07094 0.1131 1182 -0.63 0.5305 
Road Type Principal 

Arterial-
Freeways and 
Expressways 

0.1204 0.1427 1182 0.84 0.3992 

Road Type Principal 
Arterial-Other 

-0.1237 0.08927 1182 -1.39 0.1661 

Road Type Minor Arterial -0.1494 0.09607 1182 -1.55 0.1203 

Road Type Major Collector 0 . . . . 

Following Distance   -0.0006 0.003642 1182 -0.17 0.8681 

Time of Day Day -0.146 0.02996 1182 -4.88 <.0001 
Time of Day Night 0 . . . . 
Vehicle Model   -0.07818 0.02581 1182 -3.03 0.0025 

Vehicle Model   -0.06473 0.02255 1182 -2.87 0.0042 

Vehicle Model   0 . . . . 

Following 
Distance*Road 
Type 

Interstate 0.000427 0.005327 1182 0.08 0.9361 

Following 
Distance*Road 
Type 

Principal 
Arterial-
Freeways and 
Expressways 

-0.00731 0.006744 1182 -1.08 0.2784 

Following 
Distance*Road 
Type 

Principal 
Arterial-Other 

0.004713 0.004111 1182 1.15 0.2518 

Following 
Distance*Road 
Type 

Minor Arterial 0.009643 0.004419 1182 2.18 0.0293 

Following 
Distance*Road 
Type 

Major Collector 0 . . . . 
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BQ5: What is the rate of driver non-response to FCA alerts? 

Method: Non-response is defined as the absence of a post-alert braking response within 3 sec. It is 
considered as a binary outcome in which 0=Response and 1=Non Response. The unit of analysis is the 
alert, and only those alerts with the system on (at any setting) were considered for analysis. Constraints 
are listed in Table 41.  

 

Table 41 Constraints of non-response analysis 
Constraints 

1. FCA Setting – Near, Medium and Far  
2. No LDW warning at the same time. 
3. Imminent Alerts  
4. Brake Pedal Off 
5. Acceleration Pedal On 
6. Presence of lead vehicle 
7. Brake Pedal timing <=0.4 and 3<tb. 

 

Probability of non-response was modeled using logistic regression (see Equation 7). 

 (7) 

where j = alert 

Results: The significant predictors in the logistic regression model are shown in Table 42. The odds ratios 
and confidence intervals are given in Table 43. 

Table 42 Model parameters and tests of significance for logistic regression 
modeling probability of non-response to FCA alerts. 

Effect DF Wald 
Chi-Square 

Pr > ChiSq 

Setting 2 67.5031 <.0001 
Following Distance 1 4.5661 0.0326 
Road Type 4 10.0223 0.0401 
HUD 1 10.4242 0.0012 
Night 1 69.0541 <.0001 
Vehicle Model 2 29.7600 <.0001 
LV State 4 3188.6365 <.0001 
Following Distance X 
Road Type 

4 25.6031 <.0001 
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Table 43 Odds ratios for logistic regression model of non-response to FCA 
imminent alerts 

Odds Ratio Estimates 
Effect Point Estimate 95% Wald 

Confidence Limits 
Setting Medium vs. Far 1.166 1.085 1.254 
Setting Near vs. Far 1.565 1.393 1.758 
HUD Head-up display On vs. Head-up display Off 1.146 1.055 1.244 
Time of Day Day vs. Night 1.461 1.336 1.598 
Vehicle Model Equinox vs. XTS 1.071 0.985 1.165 
Vehicle Model SRX vs. XTS 0.885 0.829 0.945 
Lead vehicle State Oncoming vs. Accelerating 1.754 1.536 2.003 
Lead vehicle State Slowing vs. Accelerating 0.200 0.178 0.226 
Lead vehicle State Stopped vs. Accelerating 0.272 0.088 0.843 
Lead vehicle State Unknown vs. Accelerating 3.334 3.154 3.523 

 

BQ8:  How does driver response (PABT) differ when the system is “on” versus “off” (i.e., the 
driver is alerted or not)?  

This analysis is very similar to BQ4, but the data were recoded such that near, medium and far settings 
were all treated as On. A linear mixed model was run at the alert level. Vehicle, is treated as a random 
effect. The form of the linear mixed model is shown in Equation 8. 

 (8) 

where i = vehicle, j = alert 

Table 44 shows the significant model predictors, along with test values, and Table 45 shows the least 
squares means for all categorical effects. 

Table 44 Model of PABT with system on or off 
Type III Tests of Fixed Effects 

Effect Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

Setting 1 11711 49.11 <.0001 
Road Type 4 11711 4.2 0.0021 

Wiper 1 11711 11.18 0.0008 
Speed MPH 1 11711 453.43 <.0001 

Following Distance 1 11711 137.7 <.0001 
Vehicle Model 2 11711 29.44 <.0001 

HUD 1 11711 5.8 0.0161 
Time of Day 1 11711 32.16 <.0001 

Setting*Time of Day 1 11711 8.72 0.0032 
Following Distance*Road Type 4 11711 2.61 0.0337 
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Table 45 Least squares means for PABT model with system on versus off 
Predictor Variable Level Variable 

Level 
Estimate Standard 

Error 
DF t Value Pr > |t| 

Intercept     -0.1034 0.06015 1659 -1.72 0.0859 
Setting OFF   0.2433 0.0441 11711 5.52 <.0001 
Setting ON   0 . . . . 
Road Type Interstate   -0.1446 0.04188 11711 -3.45 0.0006 
Road Type Principal Arterial-

Freeways & 
Expressways 

  -0.1678 0.0481 11711 -3.49 0.0005 

Road Type Principal Arterial-
Other 

  -0.1227 0.03535 11711 -3.47 0.0005 

Road Type Minor Arterial   -0.1095 0.0381 11711 -2.87 0.0041 
Road Type Major Collector   0 . . . . 
Wiper Wiper Off   -0.157 0.04695 11711 -3.34 0.0008 
Wiper Wiper On   0 . . . . 
Speed MPH     0.0084 0.0004 11711 21.29 <.0001 
Following Distance     0.00402 0.00131 11711 3.06 0.0022 
Vehicle Model Equinox   -0.1211 0.0163 11711 -7.43 <.0001 
Vehicle Model SRX   -0.0418 0.01439 11711 -2.91 0.0037 
Vehicle Model XTS   0 . . . . 
HUD OFF   -0.0434 0.01801 11711 -2.41 0.0161 

HUD ON   0 . . . . 

Time of Day Day  -0.0618 0.01332 11711 -4.64 <.0001 

Time of Day Night  0 . . . . 

Setting*Time of Day OFF Day -0.1339 0.04535 11711 -2.95 0.0032 
Setting*Time of Day OFF Night 0 . . . . 
Setting*Time of Day ON Day 0 . . . . 
Setting*Time of Day ON Night 0 . . . . 
Following Distance*Road 
Type 

Interstate   0.00171 0.00177 11711 0.97 0.3325 

Following Distance*Road 
Type 

Principal Arterial-
Freeways & 
Expressways 

  0.0029 0.00201 11711 1.45 0.1484 

Following Distance*Road 
Type 

Principal Arterial-
Other 

  0.00248 0.00148 11711 1.67 0.0946 

Following Distance*Road 
Type 

Minor Arterial   0.00482 0.0016 11711 3.02 0.0025 

Following Distance*Road 
Type 

Major Collector   0 . . . . 

 

 The analysis was also repeated using two scenarios: Approaching slowing vehicle and 
approaching stopped vehicle (target remains after 4 s). Significant parameters are shown in Table 46 and 
least squares means are shown in Table 47. 
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Table 46 Model parameters for model of PABT including only in-path 
approaching slowing vehicle and approaching stopped vehicle scenarios 

Type III Tests of Fixed Effects 
Effect Num 

DF 
Den 
DF 

F Value Pr > F 

Setting 1 1201 10.32 0.0013 
Road Type 4 1201 1.56 0.1819 

Following Distance 1 1201 0.24 0.6208 
Vehicle Model 2 1201 6.2 0.0021 

Time of Day 1 1201 23.25 <.0001 
Following Distance*Road Type 4 1201 2.91 0.0207 

 

Setting (On vs. Off) is still significant. However, wiper, road type, HUD, following distance and speed 
seem to have no effect on post-alert braking time.  

In both cases with all scenarios and only the presence of lead vehicle, it is observed that the vehicles 
that have the setting turned off have a late response to the alert. The brake reaction time after these 
vehicles receive the alert is still larger compared to the vehicles that have the system turned on.  
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Table 47 Least squares means of predictors in two-scenario model using setting 
on versus off 

Effect Variable Level Estimate Standard 
Error 

DF t Value Pr > |t| 

Intercept  -0.1569 0.08522 908 -1.84 0.0659 

Setting OFF 0.1107 0.03447 1201 3.21 0.0013 

Setting ON 0 . . . . 

Road Type Interstate -0.05799 0.1117 1201 -0.52 0.6038 

Road Type Principal Arterial-
Freeways and 
Expressways 

0.116 0.1421 1201 0.82 0.4147 

Road Type Principal Arterial-
Other 

-0.1194 0.08815 1201 -1.35 0.1757 

Road Type Minor Arterial -0.1479 0.09494 1201 -1.56 0.1195 

Road Type Major Collector 0 . . . . 

Following Distance  -0.00048 0.003591 1201 -0.13 0.8943 

Vehicle Model Equinox -0.08101 0.02541 1201 -3.19 0.0015 

Vehicle Model SRX -0.06419 0.02235 1201 -2.87 0.0041 

Vehicle Model XTS 0 . . . . 

Time of Day Day -0.1421 0.02948 1201 -4.82 <.0001 

Time of Day Night 0 . . . . 

Following Distance*Road Type Interstate -0.00044 0.005233 1201 -0.08 0.933 

Following Distance*Road Type Principal Arterial-
Freeways and 
Expressways 

-0.00708 0.006706 1201 -1.06 0.2912 

Following Distance*Road Type Principal Arterial-
Other 

0.004495 0.004032 1201 1.12 0.2651 

Following Distance*Road Type Minor Arterial 0.009544 0.004339 1201 2.2 0.028 

Following Distance*Road Type Major Collector 0 . . . . 

 

AQ3: How do alert responses (PABT) change over time and as a function of alert experience? 

Method: Alert experience is parameterized using the number of prior alerts and rate of driver response 
to the alerts occurring in the data collection window. The predictor variable for the analysis is the alert 
experience, which is estimated using non-response rate in the first two months of the study. The 
dependent variable used for analysis is the average or median brake response time for the remaining 
months. Analysis is at the vehicle level. The setting is recoded as Dominant setting, which is the 
predominant setting the driver prefers during all the trips in the given time frame.  

The form of the linear mixed model is shown in Equation 9. 

 (9) 

where i = vehicle, j = month 
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Results: Table 48 shows the model predictors and hypothesis tests. Note that early non-response rate is 
not significant. Table 49 shows the least squares means of log PABT for the model.  

Table 48 Model predictors for regression model of PABT 
Type III Tests of Fixed Effects 

Effect Num 

DF 

Den DF F Value Pr > F 

Non-Response Rate (st two months) 1 1363 1.31 0.2517 

Dominant FCA Setting 2 1363 4.64 0.0098 

HUD 1 1363 4.65 0.0313 

Vehicle Model 2 1363 38.15 <.0001 

 

Table 49 Least squares means of log PABT 
Effect Variable Level Estimate Standard 

Error 
DF t Value Pr > |t| 

Intercept   0.1496 0.02489 1363 6.01 <.0001 
Non-response rate (st 
two months) 

  0.02677 0.02335 1363 1.15 0.2517 

Dominant FCA 
Setting 

Near 0.07887 0.02645 1363 2.98 0.0029 

Dominant FCA 
Setting 

Medium 0.02324 0.01994 1363 1.17 0.244 

Dominant FCA 
Setting 

Far 0 . . . . 

HUD  No -0.0559 0.02592 1363 -2.16 0.0313 
HUD  Yes 0 . . . . 
Vehicle Model Equinox  -0.1864 0.02278 1363 -8.18 <.0001 
Vehicle Model  SRX -0.0598 0.02154 1363 -2.78 0.0055 
Vehicle Model  XTS 0 . . . . 

 

AQ4:  How does normal driving behavior change over time and as a function of alert experience? 

Method: The normal driving statistics were created using the available counter data collected by the 
OnStar system over the course of the study. These counters were aggregated over the entire course of 
the study giving one value per counter per individual. These counters were then used to create a 
number of descriptive statistics to describe driving behavior. Of these, only three were considered likely 
to change as a function of system setting and exposure. 

• Proportion of time over left lane boundary7 
• Proportion of time over right lane boundary8 
• Average follow distance when following9 

                                                            
7 Calculated as proportion of the time when lane boundary confidence is high that the center of the vehicle is 
within 1m of the left lane boundary. 
8 Calculated as proportion of the time when lane boundary confidence is high that the center of the vehicle is 
within 1m of the right lane boundary. 
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The proportions were modeled using mixed effects beta models, while the average following distance 
was modeled using linear mixed effects models. In additional to demographic predictors, the proportion 
of time spent using each of the settings (calculated by number of dominant trips divided by total trips). 
Proportion of time on the Far setting was taken as the reference and the others were included as 
predictors. 

The mixed-effects beta model form is shown in Equation 10 and the linear mixed model is as in Equation 11. 

 (10) 

where i = vehicle, j = month 

 (11) 

where i = vehicle, j = month 

Constraints (filtering): No inherent limiting except where required by missing data. 

Results – Average Following Distance: Table 50 shows the linear mixed model coefficients and standard 
errors for average following distance. Positive coefficients indicate an increase in following distance as a 
function of the predictor. 

Table 50 Average Follow Distance Model (Mixed Effects Linear Model): 
Modeling: Avg. Follow Distance 

Effect Coef. 
Std. 
Error 

Intercept 22.2748 0.8966 
log(Odometer) 0.3756 0.06304 
FCA Setting - Mid 

 
  

FCA Setting - Near -3.9962 1.7279 
FCA Setting - Off -0.517 0.2233 
Odo * FCA Mid 

 
  

Odo * FCA Near 0.4401 0.1926 
Odo * FCA Off 

 
  

Haptic - Y -1.2654 0.3101 
Age 0.1807 0.01103 

 

Results – Proportion of Time over Left Lane: Table 51 shows the linear mixed model coefficients and 
standard errors for proportion of time over left lane. Positive coefficients indicate an increase in 
proportion of time as a function of the predictor. 

 

                                                                                                                                                                                                
9 Calculated using histogram data collected by OnStar. The center-point of each histogram bin was used to 
determine the ‘distance’ value for the time spent in that bin. 
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Table 51 Proportion of Time over Left Lane (Mixed Effects Beta Model): 
Modeling: Over Left Lane Prop. 

Effect Coef. 
Std. 
Error EXP(Coef) 

Intercept -2.3042 0.1189 0.0998386 
log(Odometer) -0.06412 0.012 0.9378924 
LDW Setting - Off 0.6886 0.09891 1.9909263 
Odo * LDW Off -0.05022 0.01093 0.9510202 
Model - SRX 0.1499 0.1229 1.1617181 
Model - XTS -0.2952 0.1241 0.7443827 
Age -0.0065 0.000865 0.9935211 
Odo * SRX -0.00479 0.01371 0.9952215 
Odo * XTS 0.06116 0.01375 1.063069 
LDW Off * SRX -0.2304 0.03112 0.7942159 
LDW Off * XTS -0.1666 0.03004 0.8465382 
Gender - Male       

 

Results – Proportion of Time over Right Lane: Table 52 shows the linear mixed model coefficients and 
standard errors for proportion of time over right lane. Positive coefficients indicate an increase in 
proportion of time as a function of the predictor. 

Table 52 Proportion of Time Over Right Lane (Mixed Effects Beta Model): 
Modeling: Over Right Lane Prop. 

Effect Coef. Std. Error EXP(Coef) 
Intercept -2.2252 0.06078 0.1080458 
log(Odometer) 

  
  

LDW Setting - 
Off 0.16 0.02374 1.1735109 
Odo * LDW Off 

  
  

Haptic - Yes -0.04926 0.03156 0.9519336 
LDW Off * Haptic -0.1067 0.02722 0.8987953 
Age -0.00272 0.000971 0.9972837 
Gender - Male -0.0625 0.02596 0.9394131 
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