Pedestrian Detection Systems
While the majority of our research efforts to date have been focused on DBS and CIB systems that detect and react to other vehicles and objects, NHTSA is also pursuing research related to advanced systems that are also capable of pedestrian detection, warning and automatic emergency braking. We are currently working with several industry partners (principally through the Collision Avoidance Metric Partnership, CAMP) to evaluate a variety of leading-edge pedestrian detection technologies that can both warn and automatically apply the brakes if the system detects a pedestrian collision is imminent. Our work first focused on a detailed analysis and profile of pedestrian crash scenarios using both existing crash databases as well as information collected through a real-world field study coordinated by CAMP. We then developed a variety of test procedures to parallel (or represent) high frequency crash scenarios observed from the earlier study. We also have been working with industry partners to develop standardized pedestrian test dummies and movement apparatus to improve the accuracy and repeatability of our testing. Next steps will include the development of objective test procedures for pedestrian detection systems.
Crash Avoidance Needs and Countermeasure Profiles for Safety Applications Based on Light Vehicle-to-Pedestrian Communications (DOT HS 812 312)
This study will help support the development of V2P based collision avoidance technologies and examined the GES and FARS crash databases in order to classify 21 pedestrian pre-crash scenarios based on different vehicle and pedestrian maneuvers. These scenarios were ranked based on associated costs and five priority scenarios were selected that represent 88 percent of pedestrian crash costs. For the priority scenarios crash contributing factors were examined and quantified to identify common occurrences in crashes, including physical settings, environmental conditions, and driver and pedestrian characteristics. Kinematic equations describing the crash scenarios were also derived and exercised to obtain estimates of the minimum stopping distances for various vehicle velocities and braking levels. The goal of this study was to develop an updated understanding of the pedestrian crash problem and the potential of V2P technology to address pedestrian crashes.