

Updates on THOR-50M Ongoing Research

William Millis 01.19.2023

Manufacturing Reproducibility

1

2

3

AGENDA

Alternative Shoulder Design

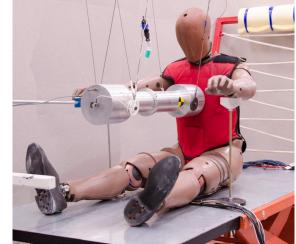
Lumbar Flex Joint Durometer

Manufacturing Reproducibility

Manufacturing Reproducibility

Purpose

Determine reproducibility of manufacturing


Methods

- Acquire ATDs from multiple manufacturers
- Obtain feedback from manufacturers on NHTSA specifications
- Evaluate performance of ATDs

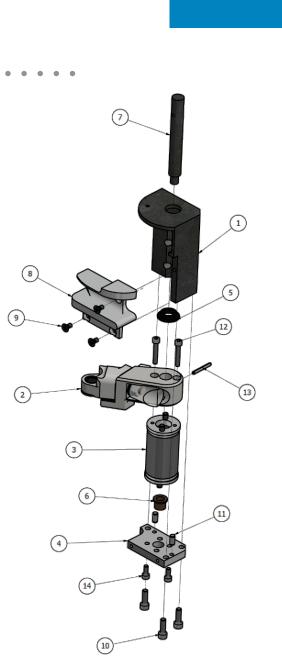
Manufacturing Reproducibility – Evaluation

- Inspect ATDs against established drawing package
- Evaluate the performance of ATDs
 - Qualification testing
 - Durability testing
 - Sled testing in simplified environment
 - Gold Standard

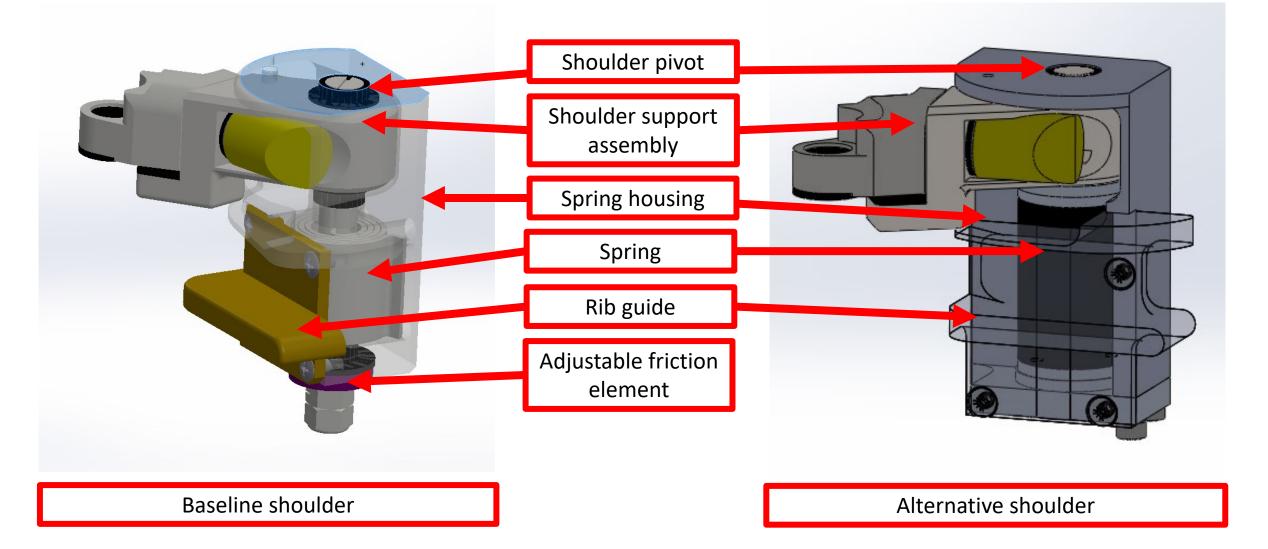
Docket ID NHTSA-2019-0106 NHTSA Crashworthiness Research – THOR-50M Documentation

Shaw, G., Parent, D., Purtsezov, S., Lessley, D., Crandall, J., Kent, R., Guillemot, H., Ridella, S., Takhounts, E., Martin, P. (2009). Impact response of restrained PMHS in frontal sled tests: skeletal deformation patterns under seat belt loading. Stapp Car Crash Journal, Vol 53, pp 1-48

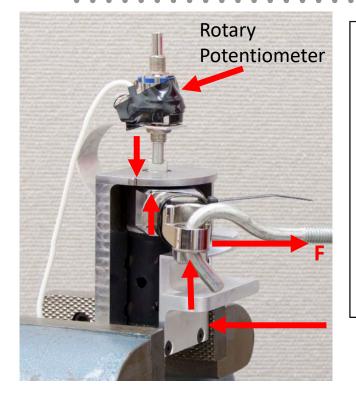
Alternative Shoulder Design

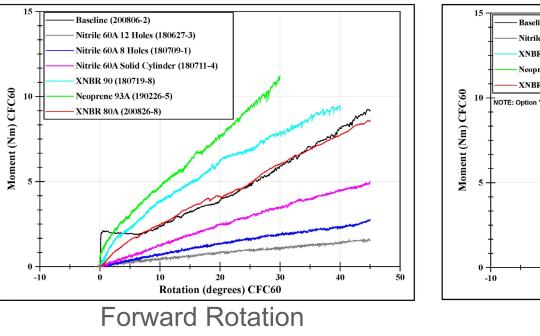


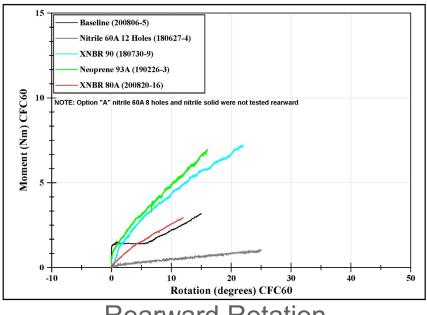
Purpose


Design an alternative shoulder for the THOR-50M, taking care not to infringe on any current U.S. patents or patent applications

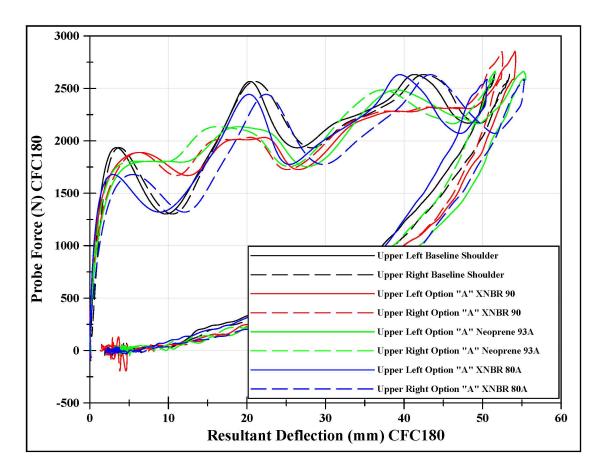
Process of Evaluation


- Quasi-static
- Qualification
- Biofidelity
- Sled




Shoulder - Design

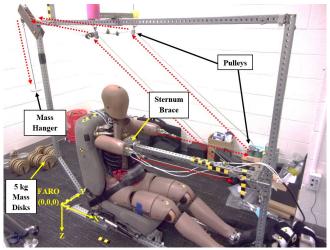
Shoulder – Quasi-static Response


Rearward Rotation

- Test multiple variants
- Determine which variant most closely matches the baseline

Direction	Test	Stiffness (Nm/deg)	R ²	% Diff from Baseline
Forward	Baseline (n=9)	0.1957		
	XNBR80A (n=1)	0.1918	0.996	0.4%
Rearward	Baseline (n=9)	0.1850		
	XNBR80A (n=1)	0.2091	0.9941	2.4%

Shoulder – Qualification Response


 All variants passed qualification testing

Parameter	Units	Specification		Baseline	XNBR 80A	
		Min.	Max.	200915-2	200924-6	
Impact Velocity	m/s	4.25	4.35	4.32	4.31	
Peak Probe Force	N		3039	2633	2630	
Peak Upper Left Resultant Deflection	mm	48.3	59.0	51.5	50.6	
Peak Upper Right Resultant Deflection	mm			53.4	55.3	
Difference Between Peak Left & Right Resultant Deflections	mm		< 5.0	1.9	4.7	
Force at Left Peak Resultant Deflection	N	2409	2944	2633	2586	
Force at Right Peak Resultant Deflection	N			2628	2582	

Shoulder – Biofidelity Response

- Only the baseline and XNBR 80A shoulders were tested
- Tornvall tests performed at: 90°, 135°, and 170°
 - X and Z displacements were evaluated with NHTSA's BRS
- Alternative shoulder performed similarly to the baseline

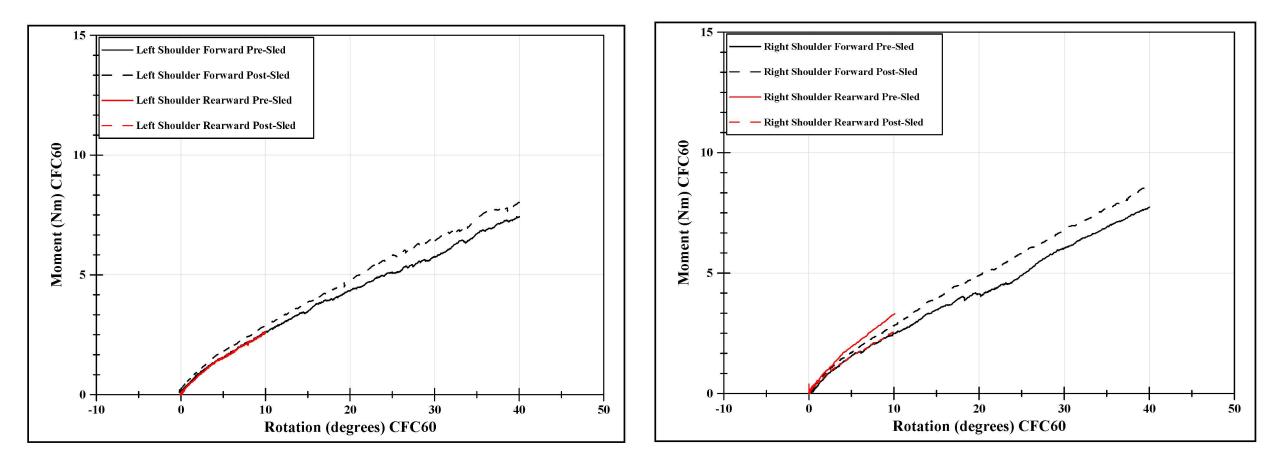
BRS Scores				
Baseline	XNBR 80A			
Shoulder	Shoulder			
1.43	1.37			

- Score represents multiples of SDs
- Lower score is better
- Score <2 indicates good biofidelity

Tornvall, F.V., Holmqvist, K., Martinsson, J., Davidsson, J., (2005). Comparison of shoulder range-of-motion and stiffness between volunteers, Hybrid III and THOR Alpha in static frontal impact loading, International Journal of Crashworthiness, 10:2, 151-160, DOI: 10.1533/ijcr.2005.0334

Hagedorn, A., Stammen J., Ramachandra, R., Rhule, H., et al.. Biofidelity Evaluation of THOR-50M in Rear-Facing Seating Configurations Using an Updated Biofidelity Ranking System, *SAE Int. J. Trans. Safety* 10(2):2022, doi:10.4271/09-10-02-0013.

Shoulder – Sled Response

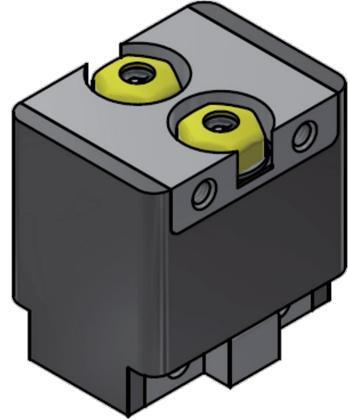

- Modified 2017 Mazda CX3 sled buck
- Pulse approximately
 NCAP CX3 test

Sled Test Responses		Test	Head Excursion (mm)	UL Thx. Res. Defl.	UR Thx. Res. Defl.	R Abd. Res. Defl.
	XNBR 80A Shoulder (n=3)	Avg.	548		45.3	45.0
		Std. Dev.	5		1.6	0.6
		CV	1%		4%	1%
er	Baseline Shoulder (n=3)	Avg.	550		48.6	47.8
Driver		Std. Dev.	7		0.6	1.0
Â		CV	1%		1%	2%
	Combined Shoulders (n=6)	Avg.	549		47.2	46.4
		Std. Dev.	5		2.0	1.7
		CV	1%		4%	4%
	XNBR 80A Shoulder (n=3)	Avg.	740	39.3		39.5
		Std. Dev.	35	2.6		2.3
۰		CV	5%	7%		6%
igei	Baseline Shoulder (n=3)	Avg.	777	45.1		40.3
sen		Std. Dev.	35	2.8		1.7
Passenger		CV	5%	6%		4%
	Combined Shoulders (n=6)	Avg.	759	42.2		39.9
		Std. Dev.	37	4.0		1.9
		CV	5%	10%		<u>5%</u>

Shoulder – Durability

Quasi-static tests were performed before and after sled tests

Lumbar Flex Joint Durometer

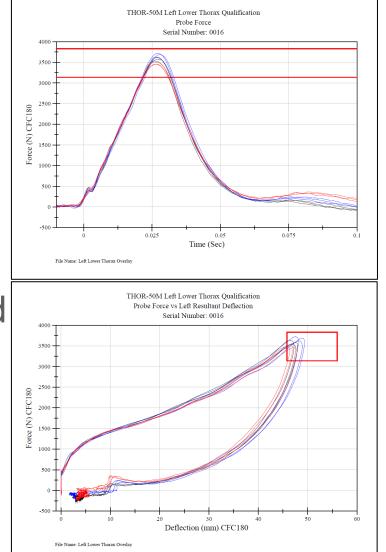

Lumbar Flex Joint Durometer

<u>Purpose</u>

Quantify performance differences between lumbar spine flex joints with various rubber durometers

Methods

- Perform qualification tests
- Perform isolated component tests

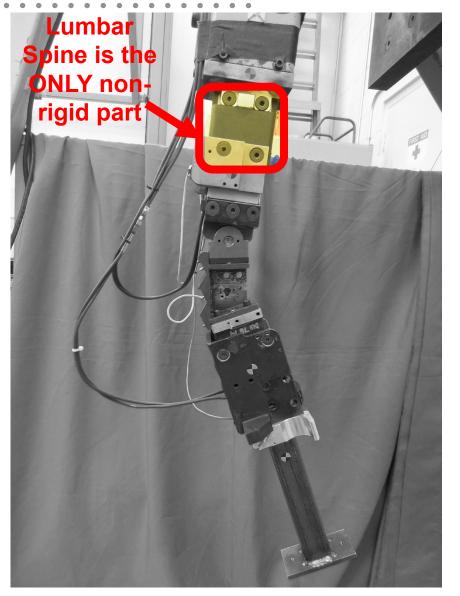

Lumbar Flex Joint Durometer – Qual.

Conditions

- One THOR-50M ATD
- Shore A spine durometers: 65, 75, 85
 - Drawing specification is Shore A 75±2
- Qualification test modes
 - Head, upper thorax, lower left/right thorax, and lower abdomen

Preliminary Results

- ATD positioning is affected by the durometer
- All spines produced passing test results


Lumbar Flex Joint Durometer – Isolated

Objective

 Determine response differences to better define material properties for FE models

Method

- Assemble THOR-50M spine with ballast and all rigid components except for the lumbar spine flex joint
- Perform component tests on pendulum

Thank you!

William Millis: william.millis@dot.gov