# Recent NHTSA Lane Keeping Support Research

Taylor Manahan Transportation Research Center Inc.

Garrick Forkenbrock NHTSA





#### **Presentation Overview**

- What is LKS?
- 2016 Test Objectives and Methods
  - Evaluate contemporary systems
  - European NCAP and NHTSA procedures
  - Develop test maneuver automation using a steering robot
  - Results and observations
  - Problems associated with a steering robot
  - Future Plans for LKS Research



#### What is LKS?

- Lane keeping support (LKS)
  - Momentarily applies a steering torque and/or a braking input
  - Used to help restore lane position
  - Automated Vehicle SAE Level 0
- LKS is not Lane Centering Control (LCC)
  - LCC <u>continuously</u> applies steering inputs
  - Used to maintain lane position in the center of the lane
  - Automated Vehicle SAE Level 1





## 2016 Research Objectives

- Use a steering robot to improve test accuracy and repeatability
  - Evaluate consequences associated with a steering robot
- Assess the Euro NCAP and 2016 NHTSA (experimental) LKS test methods
- Evaluate LKS system responses of contemporary vehicles
  - Ability to recover from an imminent lane departure
  - Observe whether the first LKS response causes a secondary departure
    - Secondary departures may result from the LKS correction of the initial lane departure
    - NHTSA doesn't want to correct one safety problem only to introduce another





## 2010 NHTSA Lane Keeping Support Procedure

- A supplement within NHTSA's Lane Departure Warning (LDW) NCAP test procedure
- Historically used driver based steering control
- Includes two lateral velocity categories
  - Low 0.1 to 0.6 m/s with a target lateral velocity of 0.5 m/s
  - <u>Iteratively Increased</u> Increase in lateral velocity from 0.6 m/s to a magnitude where LKS can no longer prevent a lane departure from occurring

| Lateral Velocity      | Line Type | Departure Direction | Number of Trials |  |
|-----------------------|-----------|---------------------|------------------|--|
| Low                   | Solid     | L                   | 5                |  |
|                       |           | R                   | 5                |  |
| Iteratively Increased | Solid     | L                   | 10               |  |
|                       |           | R                   | 10               |  |



# 2016 NHTSA Experimental LKS Procedure (used for work described in this presentation)

- Differs from 2010 LKS test procedure in the following ways:
  - Modelled after European NCAP LKS procedure
  - Automated using steering controller robot
  - Achieves lateral velocity by travelling partially through curved radius (R=1200 m)
  - Utilizes two-part baseline tests to determine steering control release point
  - Performed at multiple lateral velocities
    - 0.1 m/s to 1.0 m/s iteratively increased by 0.1 m/s



#### 2016 Test Matrix

- Two test types
  - European NCAP
  - 2016 NHTSA (experimental)
- Three vehicles:
  - 2017 Audi A4 Steering-based
  - 2017 Volvo S90
  - 2017 Mercedes E300 Brake-based



| Lateral Velocity                                     | Test Type | Departure Direction | Number of Trials |
|------------------------------------------------------|-----------|---------------------|------------------|
| 0.1 m/s to 1.0 m/s, iteratively increased by 0.1 m/s | Euro NCAP | L                   | 3                |
|                                                      |           | R                   | 3                |
|                                                      | NHTSA     | L                   | 3                |
|                                                      |           | R                   | 3                |



#### 2016 Test Scenario

- Vehicle initially driven in a straight line
- Transitioned to a curved path (R = 1200 m) until desired heading angle is achieved using closed loop control
- Vehicle path straightened
- At a time based on a baseline output
  - Steering enters open loop control vehicle path straightens
  - Constant throttle position is maintained

Potential secondary lane departure





#### 2016 Results

- Comment regarding additional tests performed with the Mercedes E300
  - Method 1: Constant throttle position after open loop control point
  - Method 2: Released throttle after open loop control point
- Key to results charts
  - No highlight (white/light blue): No tests resulted in a departure
  - Yellow: At least one, but not all tests resulted in a departure
  - Red: All tests resulted in a departure
- Red line indicates the cut-off lateral velocity for the European NCAP LKS test procedure
- "n/a" indicates no secondary departure possible because an initial recovery did not occur
- NOTE: European NCAP ratings do not consider secondary lane departures



# **Results – Initial Lane Departures**

| Initial<br>Lateral<br>Velocity<br>(m/s) | NHTSA   |               |          |       | EURO    |               |          |       |
|-----------------------------------------|---------|---------------|----------|-------|---------|---------------|----------|-------|
|                                         | Audi A4 | Mercedes E300 |          | Volvo | Audi A4 | Mercedes E300 |          | Volvo |
|                                         |         | Held          | Released | S90*  | Auui A4 | Held          | Released | S90*  |
| 0.1                                     | 0/6     | 0/6           | 0/6      | -     | 2/6     | 0/6           | 0/6      | 0/6   |
| 0.2                                     | 0/6     | 0/6           | 1/6      | -     | 0/6     | 0/6           | 1/6      | 0/6   |
| 0.3                                     | 0/6     | 0/6           | 0/6      | -     | 0/6     | 1/6           | 0/6      | 0/6   |
| 0.4                                     | 0/6     | 0/6           | 0/6      | -     | 1/6     | 1/6           | 0/6      | 0/6   |
| 0.5                                     | 0/6     | 0/6           | 1/6      | -     | 0/6     | 0/6           | 0/6      | 0/6   |
| 0.6                                     | 0/6     | 0/6           | 0/6      | -     | 0/6     | 6/6           | 6/6      | 1/6   |
| 0.7                                     | 0/6     | 3/6           | 3/6      | -     | 1/6     | 0/6           | 0/6      | 1/6   |
| 0.8                                     | 1/6     | 2/6           | 0/6      | -     | 2/6     | 5/6           | 2/6      | 4/6   |
| 0.9                                     | 4/6     | 5/6           | 3/6      | -     | 2/6     | 6/6           | 6/6      | 3/3   |
| 1.0                                     | 0/6     | 3/3           | 3/3      | -     | 0/6     | 6/6           | 6/6      | 3/3   |

<sup>\*</sup>Volvo S90 testing has not been fully completed at this time



## **Results – Secondary Lane Departures**

| Initial<br>Lateral<br>Velocity<br>(m/s) | NHTSA   |               |          |       | EURO    |               |          |       |
|-----------------------------------------|---------|---------------|----------|-------|---------|---------------|----------|-------|
|                                         | Audi A4 | Mercedes E300 |          | Volvo | Audi A4 | Mercedes E300 |          | Volvo |
|                                         |         | Held          | Released | S90*  | Auui A4 | Held          | Released | S90*  |
| 0.1                                     | 2/6     | 2/6           | 5/6      | -     | 0/4     | 1/6           | 5/6      | 0/6   |
| 0.2                                     | 2/6     | 0/6           | 4/5      | -     | 3/6     | 1/6           | 2/5      | 0/6   |
| 0.3                                     | 3/6     | 1/6           | 6/6      | -     | 1/6     | 0/5           | 4/6      | 1/6   |
| 0.4                                     | 1/6     | 0/6           | 4/6      | -     | 0/5     | 0/5           | 5/6      | 0/6   |
| 0.5                                     | 1/6     | 1/6           | 4/5      | -     | 0/6     | 0/6           | 3/6      | 2/6   |
| 0.6                                     | 0/6     | 6/6           | 2/6      | -     | 1/6     | n/a           | n/a      | 2/5   |
| 0.7                                     | 0/6     | 1/3           | 2/3      | -     | 0/5     | 6/6           | 5/6      | 5/5   |
| 0.8                                     | 1/5     | 4/4           | 5/6      | -     | 0/4     | 1/1           | 4/4      | 1/2   |
| 0.9                                     | 2/2     | 0/1           | 2/3      | -     | 0/4     | n/a           | n/a      | n/a   |
| 1.0                                     | 2/6     | n/a           | n/a      | -     | 0/6     | n/a           | n/a      | n/a   |

<sup>\*</sup>Volvo S90 testing has not been fully completed at this time



## **Testing Results Observations**

- Discrepancies between Euro NCAP and NHTSA test scenarios' results
  - Higher lateral velocities
  - Secondary lane departures
- Steering robot: influence on vehicle performance
  - Drag from motor affecting LKS capabilities
  - Primarily for secondary departures, but possibly even initial departures



#### Effect of Steering Robot on Lateral Response

- Steering robot is needed to insure test accuracy and repeatability, however...
- Vehicle response can be affected







# **LKS Test Performance Without Steering Robot**





# **LKS Test Performance With Steering Robot**





# Effect Of Steering Robot Installation On Lateral Response





## Summary

- 2016 LKS testing
  - LKS test maneuvers were performed using steering and braking controller robots to achieve highly repeatable steering and throttle inputs
    - Compared to driver-based inputs, test accuracy and repeatability was improved
    - Discovered use of steering controller may confound the ability accurately examine LKS system performance
  - Gained experience with the European NCAP test procedure
- Anticipated NHTSA LKS testing for 2017
  - Complete the evaluation initiated during 2016
  - Identify a way to reduce the effect of using robotic steering control

## **NHTSA**

SAE Government Industry Meeting | January 25-27, 2017

#### **THANK YOU!**

TAYLOR MANAHAN
TRANSPORTATION RESEARCH
CENTER, INC.
taylor.manahan.ctr@dot.gov