Skip to main content

Vehicle Safety

Resources

The Office of Vehicle Safety Research and supports U.S. DOT’s and NHTSA’s safety goals by conducting research and safety testing of motor vehicles and motor vehicle equipment. 

NHTSA’s recently published vehicle safety reports are listed chronologically below.



139 Results
Title
 

Active Park Assist Draft Test Procedure Validation

The 13 test scenarios described in NHTSA’s June 2019 draft research active park assist (APA) test procedure were used to evaluate the system performance of three passenger cars: a 2017 BMW 540i, a 2017 Tesla Model S 90D, and a 2018 Cadillac CT6. This report discusses the test results and provides a general assessment of the scenarios used. The June 2019 version of this draft test procedure is an update to that originally published in April 2018. The test scenarios were intended to emulate commonly encountered perpendicular and parallel parking scenarios. Two scenarios evaluated how the subject vehicle performed back-in parking maneuvers. Three scenarios tested the vehicle response to a pedestrian encroaching into the parking space while the vehicle performed the parking maneuver. Two scenarios examined the vehicle’s response to a following vehicle that stops and obstructs the path when it began to perform the parking maneuver. Finally, 6 scenarios were designed to see how the test vehicle reacts to the driver performing a manual override of the steering, accelerator pedal, or brake pedal inputs during the parking maneuver.

Methods Used to Develop a Model for Crash and Injury Projections for 2020-2030

This report describes in detail the design and implementation of a projection model developed at NHTSA’s Vehicle Research and Test Center that will be used to identify future crash, occupant, and injury issues remaining. The most urgent issues in crash safety research have typically been identified with retrospective, real-world crash data. However, this report describes methods for projecting future crashes using retrospective data from NASS CDS, NASS GES, and FARS, along with the best forecasts of population and transportation trends, and estimates of the effects of current and planned safety countermeasures.

Draft Research Test Procedure Performability Assessment for Five ADAS Variants

This report summarizes an evaluation of five NHTSA draft research test procedures designed to evaluate the test track performance of light vehicles equipped with advanced driver assistance systems (ADAS): active park assist (APA), intersection safety assist (ISA), blind spot intervention (BSI), traffic jam assist (TJA), and opposing traffic safety assist (OTSA).

Evaluation of Foam Specifications for the Proposed FMVSS No. 213 Test Bench

This report documents the development of the recommended test procedures and specifications for the seat cushion foam to be used on the proposed upgraded FMVSS No. 213 frontal sled buck assembly, in support of the recently issued notice of proposed rulemaking.  Two sets of specifications are recommended: procurement specifications on which NHTSA (or its contracted test labs) could rely on during the procurement process, and test specifications to which NHTSA contract laboratories must certify the foams used in FMVSS No. 213 testing. This report also includes procedures for storing and testing the foam specimens for certification.

An Applied Review of Simulation Validation Approaches on a Vehicle Dynamics Model

This report presents an approach to vehicle dynamics modeling and validation of a class 6 single-unit truck, with pneumatic brakes. The model was developed using dSPACE Automotive Simulation Models for heavy vehicles with a hardware-in-the-loop pneumatic brake test bench. The report discusses vehicle model validation techniques and applies methodologies found in literature including subjective and objective approaches. This report finds the error quantification method through the use of empirical cumulative distribution methods that estimate the probability of the error between simulation and test track data to have the potential to facilitate thresholds for model acceptance. The goal is to assess vehicle dynamics simulation fidelity with probabilistic metrics within a certain error tolerance.

Evaluation of Seat Foams for the FMVSS No. 213 Test Bench

Child restraint systems sold in the United States must meet performance requirements specified in the Federal Motor Vehicle Safety Standard No. 213, which includes a sled test simulating a 30 mph frontal impact.  The design of the original FMVSS No. 213 test bench was based on a 1974 Chevrolet Impala bench seat. NHTSA updated some features of the bench seat in 2003 (68 FR 37620) to better represent vehicle seats of that time. As part of NHTSA’s periodic regulatory review, NHTSA once again evaluated whether the current FMVSS No. 213 test bench, including the seat foam, needs further modification to represent the rear seats of recent model passenger cars. This report describes the identification and testing of foam samples representative of more recent model year vehicles.

Failure Modes and Effects Analysis for Wireless and Extreme Fast Charging

This report focuses on the assessment and failure mode and effects analysis (FMEA) of various concept architectures as static charger, and extreme fast charger for high-power wireless and wired EV charging systems.  A better understanding of the nature of these newer charging systems can help with better management of new risks they may introduce for people or the vehicle when the charging system is in use. In addition, future vehicles may be charged while the vehicle is in use either at stationary points along the road (stop sign, bus stop, traffic light) or even charged while in motion.

Motorcoach Safety Research – Interior Impacts and Compartmentalization

In response to the MAP-21 Reauthorization Act of 2012 and research of crashworthiness features of motorcoaches, NHTSA initiated research of  occupant protection in motorcoaches. This report describes technologies that may enhance that protection from two perspectives – interior head impact protection from padding and the compartmentalization safety concept from enhanced seat designs. To evaluate head injury in a crash, free-motion headform impact tests were performed on motorcoach seats and to the interior surfaces of motorcoaches. The results showed that the seats and bus interiors can produce high head injury criterion (HIC) responses. Padding types could reduce baseline HIC values by 50 to 85 percent. Sled tests conducted on seats with lap-shoulder belts showed that test dummies were contained in their seating compartment during the impact and rebound phases for every test condition, and all seat attachments remained intact.  A comparison of dummy kinematics between the physical sled tests and computer simulations showed very good agreement.

Li-Ion Battery Pack Immersion Exploratory Investigation

This report describes research assessing immersion of an electrified vehicle’s Li-ion battery pack in saltwater and brackish water, a relatively infrequent but not-unheard-of occurrence. Understanding safety implications of battery immersion helps stakeholders including manufacturers, first and second responders, and the general public. As more electrified vehicles begin to see use on-road, more electrified vehicles would be expected to be involved in large-scale flooding events. Therefore, it is worthwhile to investigate the procedures to be used as well as the response of recent Li-ion batteries under these conditions. Seven batteries were tested for immersion as well as post-immersion smoking or fire.

Intersection Safety Assist Draft Test Procedure Performability Validation

The report summarizes the use of three preliminary ISA test scenarios, discusses the results from testing one light vehicle equipped with ISA, and provides general assessments of the scenarios used.  Results of this report were used to define the specifications for NHTSA’s ISA draft research test procedure.