Interpretation ID: nht74-2.26
DATE: 07/09/74
FROM: AUTHOR UNAVAILABLE; R. L. Carter; NHTSA
TO: Wanger Electric Corporation
TITLE: FMVSS INTERPRETATION
TEXT: This responds to your March 12, 1974, request for interpretation of the volume requirements for service brake chambers in S5.1.2.1 and S5.2.1.2 of Standard No. 121, Air Brake Systems:
S5.1.2 Total service reservoir volume shall be at least eight times the combined volume of all service brake chambers at maximum travel of the pistons or diaphragms.
You also requested the addition of language equating brake chamber volume with brake chamber displacement, based on nominal effective area and rated stroke.
In testing for compliance with S5.1.2.1 and S5.2.1.2, the NHTSA will accept a manufacturer's published "rated volume" of the brake chamber with the piston or diaphragm at maximum travel. This means that the manufacturer may specify the full stroke of the piston or diaphragm and compute the "rated volume" based on the designed volume of the chamber and the full stroke he has established. This volume may be somewhat larger than "nominal brake chamber displacement" which does not necessarily account for the void ahead of the relaxed diaphragm or piston, the so-called "pre-fill volume". This volume must be included because it must be pressurized along with the displaced volume.
In the absence of manufacturer's published ratings, the NHTSA will measure the brake chamber volume with the push rod at maximum stroke.
Your request to add explanatory language to the standard of the measurement technique is denied as unnecessary in view of this interpretation.
Sincerely,
ATTACH.
March 12, 1974
James B. Gregory, Administrator -- National Highway Traffic Safety Administration
Re: Docket 73-13; Notice 3 74-10; Notice 1 49 CFR 571.121
Petition for Reconsideration FMVSS-121, Air Brake Systems
Dear Dr. Gregory:
We were pleased to note in the March 1, 1974, Federal Register (39FR-7966) that the NHTSA needed further consideration on petitions for air tank volume before an answer would be published.
We apparently did not place adequate emphasis on this facet of FMVSS-121 compliance. Instead of a petition, we addressed a letter dated July 13, 1973, to the Director, Office of Operating Systems, for an interpretation. In that letter we asked only one question and it is quoted below:
Will the NHTSA accept the vehicle or chamber manufacturers' nominal value for maximum allowable stroke on each actuator when determining the minimum vehicle reservoir capacity required by S5.1.2.1 and S5.2.1.2?
In view of the absence of any response to a fundamental question, the manufacturers of air-braked vehicles and air brake equipment have gone in divergent directions with their own "interpretations." Apparently, it is a more profound problem than we or our competitors anticipated. In defense of our commercial position in this product area, we now find it necessary to submit this letter as a Petition.
Petition (1) We petition for an answer to the question posed in our July 13, 1973, letter (as quoted above).
In support of this petition we have attached a copy of that letter as Appendix A. The unanswered question appears on Page 4.
We will risk being a little repetitious, but our concern is that too much emphasis is being placed on finite measurements of chamber volume and reservoir volumes. From a statistical viewpoint, the case of trailer reservoir volume is a classic example of compliance or certification "overkill." S5.2.1.2 reads:
S5.2.1.2 Total reservoir volume shall be at least eight times the combined volume of all service brake chambers at maximum travel of the pistons or diaphragms.
In mathematical terms the word "eight" has a numerical equivalent of 8. For degrees of accuracy it could be 8.0, 8.00, 8.000, --- but it was just commonplace old "number eight."
In our letter of July 13, 1973, we reproduced the SAE J813 Recommended Practice for Air Brake Reservoir Volume (see Page 2, Appendix A). A truck trailer was considered to need "not less than 4 times the actuator displacement volume at maximum travel of the piston or diaphragm." The industry has accepted this 100% improvement in stored volume. Now all we are trying to do is determine whether this gross volume can be determined by simple mathematics or will require ultra-sensitive physical measurement of the actuators and the associated reservoirs.
Not only do the simple calculations benefit the designers of vehicles and brake systems, they have an obvious benefit to the NHTSA Office of Standards Enforcement.
Does the Office of Operating Systems assign the accuracy of these measurements to four significant figures necessary to the safe operation of a trailer? We see no technical justification for this. If there is, then it should be public knowledge. This is our rationale. Again using the most popular trailer as the example: It has 2 cam brakes with type 30 (30 square inch nominal effective area) chambers for actuation. These chambers have a nominal stroke of 2 1/2 in. (one source has a 2 3/4 inch stroke).
Under SAE J813 the required reservoir volume is:
4 x (Nominal Area) x (Nominal Max. Stroke) x (No. of Chambers) = Volume or 4 (30) (2.5) (2) = 600 cubic inches.
Under S5.2.1.2 of FMVSS the simple approach is
8 (30) (2.5) (2) = 1200 cubic inches.
Now we industry specialists get concerned by public statements at NHTSA meetings that it should be easy to measure --- put it (chamber) on a table, stroke it under pressure and measure the volume.
Production tolerances may allow a maximum stroke to extend to 2.65 inches or another 8 (30) (0.15) (2) = 25 cubic inches.
A further study points out that chambers have a void ahead of the relaxed diaphragm. It is there to assure good entry of unrestricted air flow to the effective area. This pre-fill volume can be at least 5 cubic inches per chamber or (8) (5) (2) = 80 cubic inches per axle.
At full stroke the defection of the non-rigid diaphragm adds another approximate 12 cubic inches per chamber or 8 (12) (2) = 192 cubic inches per axle. It is not needed at mid-stroke. Therefore, this is a superfluous requirement. There are many other more significant factors affecting chamber/brake output if we consider brake effectiveness under such an extreme condition.
The gross addition for these three factors alone is -
25 cu. inches 80 cu. inches +192 cu. inches
297 cubic inches per axle.
Note 192 cubic inches is beyond the point of useful volume and should not be a part of this measurement anyway.
To prove compliance or non-compliance using all of the added factors would require a very sophisticated laboratory contract and allied equipment. The report would be documented by instrument calibrations and certifications traced back to the National Bureau of Standards.
Did the NHTSA really want its "doctrine of adversity" to become this costly a situation? We can't believe the task force responsible for the first issue of FMVSS-121 was that conversant with the detailed construction of chambers to recognize the disparity of viewpoints in measuring technique that have evolved. We are certain there was not one iota of data in the DOT contract files to substantiate this stringent a need. From the public meetings we recall that concern for reservoir size was subordinated in seriousness because trailers are thought to have all sorts of space for reservoirs. In some cases this is true. However, random tank placement is not possible. One other FMVSS-121 requirement makes remote tank locations impractical.
That requirement is the Brake Actuation Time found in S5.3.3. To reach 60 psi in 0.25 sec. from actuation of the test rig control requires optimum system designing --- this prohibits such luxuries as -
(a) long air lines to the chambers
(b) untested hose sizes for these line
(c) remote reservoirs to contain this superfluous volume of air.
We could not predict how essential all of this would be in 1971, but we have come a long way. It was late Spring, 1973, when we became extremely concerned about contract testing to evaluate reservoir volume. We had already acknowledged that we were part of a regulated industry. On July 13, 1973, we demonstrated our intent to act like we were being regulated and posed our "simple" question. We are disappointed that an early response was impossible to develop and furnish. We are further disappointed that the 1972 and 1973 petitions filed by a competitor on this same subject matter have not resulted in positive rulemaking actions to resolve the internal problems that must exist between the Office of Operating Systems and Office of Standards Enforcement.
Perhaps this aspect of FMVSS-121 is not as vital as decisions on the effective date, but rule content does influence ability to meet effective dates. We trust this reinforcement of open petitions will prompt immediate action.
In summary, we believe an affirmative reply to our July 13, 1973, question will not adversely affect vehicle safety. If there is any suspicion in the Office of Standards Enforcement that the vehicle manufacturers or chamber manufacturers would falsify their nominal stroke or nominal areas for these components to avoid "proper" sizing of reservoirs, then that should be a subject for docket comment. We are already charged with honest manufacturing recommendations for brake adjustment, air compressor capacity, interpretation of "controlled lockup," option choices for parking brake mode, transmission gear range, tire inflation pressure, gross vehicle weight rating, gross axle weight ratings, burnish options and others not mentioned.
Our conclusion is that the following petition will reflect a simple means for calculations:
Petition (2) We petition for the addition of this sentence to S5.2.1.2 (see Page 2): "For purposes of establishing reservoir volumes, brake chamber displacement is equal to the product of the nominal effective area and nominal rated stroke."
It may be that the relative ease of chamber and reservoir measurements makes them good "compliance targets," but if the enforcement of FMVSS-121 is reduced to such attack, the goal of the NHTSA and the efforts of the industry to attain these goals will be unjustly inhibited in future vehicle safety programs.
Very cordially yours,
WAGNER ELECTRIC CORPORATION; John W. Kourik -- Chief Engineer, Automotive Products
Attachment: Appendix A
WAGNER ELECTRIC CORPORATION WAGNER DIVISION
July 13, 1973
Elwood T. Driver, Code 41-30 -- Director, Office of Operating Systems, NHTSA
Gentlemen:
As a manufacturer of brakes and air brake actuating system components, Wagner Electric Corporation is desirous of consistent and accurate interpretations of all applicable Federal Motor Vehicle Safety Standards. We are encountering an increasing amount of confusion in the industry regarding the method or procedure to be used in establishing the air reservoir capacity for air brake vehicles as required by FMVSS-121 (Section 5.1.2.1 and Section 5.2.1.2). We are, therefore, requesting interpretation and/or clarification of these sections with regard to the wording ". . . the combined volume of all service brake chambers at maximum travel of the pistons or diaphragms . . ." as found in Sections 5.1.2.1 and 5.2.1.2.
While the method of measurement of brake actuator volume may seem insignificant, in some cases it has become a major concern to decide whether an existing reservoir volume can be used or whether a new air reservoir must be made up with a slightly larger capacity. The determining factor is how the brake actuator volume requirements are measured. Therefore, a prompt response would be most appreciated so that the design and specification of air system components required to meet FMVSS-121 can be finalized.
Prior to Docket 70-17 and Docket 70-16 work by the NHTSA the recommendation for air brake reservoir volume used by some of the vehicle manufacturers was SAE J813.
AIR BRAKE RESERVOIR VOLUME
AIR BRAKE RESERVOIR VOLUME -- SAE J813
SAE Recommended Practice
Report of Brake Committee approved November 1961
Scope -- This recommended practice establishes minimum volume requirements for air reservoirs for automotive vehicles using compressed air systems essentially for the actuation of the brake. Accessories that utilize compressed air for their operation are not included in the conventional air brake system and, therefore, additional volume must be provided for their requirements. Where air operated accessories are used, a check valve or equivalent device will be required to provide protection to the brake system.
These recommendations for minimum reservoir volumes in air brake systems are based on past experience and are intended as a guide in selecting the proper size reservoirs to assure an adequate source of braking power under normal level operating conditions.
General -- The volume of the brake actuators in the air brake system, commonly referred to as brake cylinders, brake chambers, or roto-chambers, varies with the diameter and travel of the piston or diaphragm. The reservoir volume depends upon the size and number of the actuators on the vehicle and the type of vehicle service. Recommended volumes are calculated in Table 1 by multiplying the total volume of all actuators by an experience factor. Depending on traffic conditions and terrain, reservoir volumes, greater than the minimum values, should be considered.
(Illegible Table)
This recommended practice had also been endorsed in the Final Report of the Consolidated Brake Task Force of the Joint AMA-TIMA Brake Committee dated October 28, 1965. SAE J813 was reproduced above to simplify the evaluation of the comments which follow for those individuals who were not acquainted with previous (and current) recommended practice. Note that trucks or truck-tractors required only eight (8) times the actuator displacement volume and truck-trailers only four (4) times the actuator volume. We know from our experience that the maximum travel used throughout the industry in determining actuator displacement was the nominal value for the stroke of the actuator and that there was no attempt to incorporate production variations due to manufacturing tolerances. When we compare the values for the volume in J813 with the requirements of S5.1.2.1 (trucks and buses) and S5.2.1.2 (trailers) it will be noted that significant improvement in the stored air volume has been made mandatory by FMVSS-121. There is even further significance in this change to the large volume requirement in that many vehicles were built and are being built in 1973 with reservoir capacities less than the requirements specified in J813.
Perhaps it was not recognized at the time that FMVSS-121 issued that the efficiency of brake chambers has the characteristic shown in Figure 2. The performance requirements of FMVSS-121 for (1) actual stopping distance measurements and (2) timing requirements are based on brakes being adjusted to the vehicle manufacturers' recommendation. Figure 2 demonstrates that the mid stroke of most brake chambers is the point of approximate 100% efficiency. Shorter strokes are associated with higher output than would be nominally expected. In S5.1.2.1 and S5.2.1.2 the volume of all service reservoirs and supply reservoirs is based on ". . . the combined volume of all service brake chambers at maximum travel of pistons or diaphragms." As vehicle manufacturers begin to finalize the design of the variety of systems essential to the different vehicle chassis, space for air reservoirs is precious. It is advantageous for the vehicle manufacturers and the component suppliers to select a limited number of reservoir sizes for the purposes of simplicity in design, ease of procurement, and economy of using a few standard reservoir sizes.
If the most adverse characteristics are to be determined for compliance, not only must the chambers be subjected to extremely close measurement of displacement but the net displacement of air reservoirs must be measured very precisely. We believe it is advantageous for the NHTSA to recognize that the twelve (12) and eight (8) times minimum volume requirement for trucks and trailers respectively does not require the same degree of accuracy needed to measure application and release times or to measure stopping distance compliance. We are therefore proposing that chamber strokes used in these calculations be based on the nominal values established as the maximum allowable stroke for the components installed on the vehicle. It will be noted in Figure 1 that the probable variation between a nominal stroke of 2.50" and a stroke which allows for all production tolerances is only 97.1-90.0 = 7.1 cubic inches per chamber. On a tandem axle trailer or a tandem drive axle tractor this 28 cubic inch variation has been noted to warrant an increase in the number of reservoirs essential for very precise compliance to the general requirement in Sections 5.1.2.1 and 5.2.1.2. This seems to be an unnecessary expense for the manufacturers to incur since standard reservoir volumes could be used at the lower value without any real sacrifice in vehicle performance. The slight variation in stored volume will not have any adverse effect on application time. If it did, then correction in the volume would have to be necessary in order to comply with the application time requirements for a given vehicle. We do not see that this slight volumetric difference is essential for skid control systems. It is characteristic of skid control systems to exhaust air from the service line and deplete the service reservoir(s). When skid control is functioning the performance of any system becomes self-limiting at a point at which the air pressure no longer produces sufficient brake torque to generate impending skids. Once this pressure level is achieved there is no further demand for reserve capacity in the air brake system. Therefore the stopping requirements for vehicles from 60 and 20 mph can be satisfied in the road test phase of FMVSS-121 without having to be too precise in establishing the actual net chamber/reservoir measurements.
Typical of some of the problems which can be generated by the preciseness of FMVSS-121 is the Figure 1 test rig for trailers. While 2000 cubic inch reservoirs could be obtained or could be made by modification of standard reservoir sizes, the typical unit produced in the industry is 2020 cubic inches. By using inert ballast material, a reduction of 20 cubic inches in the stored capacity of the reservoir is relatively easy. This is a case where we do not feel that a 20 cubic inch variation is really a significant part of the over-all performance requirement of either the vehicle or the test rig but the strict implementation of Figure 1 requires special equipment and added expense.
We have presented this appraisal of the situation which confronts the vendor and vehicle industry in order to provide some relief that will be of mutual benefit to the public, the vehicle manufacturers, and the NHTSA by concentrating on the critical aspects of FMVSS-121. If each phase of the Standard is put into its proper perspective it will enable the NHTSA and the industry to begin implementation of good cost/benefit practices. For this reason (Illegible Word) then ask the following:
Will the NHTSA accept the vehicle or chamber manufacturers' nominal value for maximum allowable stroke on each actuator when determining the minimum vehicle reservoir capacity required by S5.1.2.1 and S5.2.1.2?
For minor clarification, this question is directed at using (1) the middle of the three curves shown on Figure 1; (volume versus stroke at 100 psi) and (2) a volumetric requirement of 90 cubic inches at a nominal stroke of 2.50". We have encircled that point for emphasis.
Very truly yours,
John W. Kourik -- Chief Engineer, Automotive Products
Attach. Figures 1 & 2 (Graphics omitted)