RESEARCH & EVALUATION
Vehicle Safety Research
Vehicle Safety
The Office of Vehicle Safety Research and supports U.S. DOT’s and NHTSA’s safety goals by conducting research and safety testing of motor vehicles and motor vehicle equipment.
NHTSA’s recently published vehicle safety reports are listed chronologically below.
Title | |
---|---|
search results table | |
Human Factors Research On Seat Belt Assurance SystemsThis report documents a limited naturalistic field study conducted to evaluate how part-time seat belt users interact with two prototype seat belt assurance systems (SBAS), including a transmission interlock system and a speed limiter system. Data on participants' driving behavior and their interactions with the SBAS were collected and, along with subjective ratings, were used in the final analysis. The results showed statistically significant improvements in seat belt use for both SBAS types such that the percentage of unbelted driving time (or trips) significantly decreased during the treatment period as compared to the percentage of unbelted driving time (or trips) during the baseline period. This report support NHTSA's mission to save lives, prevent injuries, and reduce economic costs due to road traffic crashes, through education, research, safety standards and enforcement activity. |
DOT HS 812 838 |
Determination of Optimal RibEye LED Locations in The WorldSID 50th Percentile Male DummyThis report documents methods and results of testing and analysis to determine optimal locations for RibEye LEDs to measure chest deflection in the WorldSID 50th percentile male crash test dummy. This study determined that the optimal locations for the front and rear chest deflection measurements, along with the lateral-most location, which is currently measured, occur at a linear distance of 35 mm in the x direction with respect to the lateral-most location. Using these optimal measurement locations, estimated deflections resulted in a worst-case error of 9 mm and a mean error of 1.1-1.4 mm. In comparison, measuring deflection in the current tests at only a single location (lateral-most location), would have resulted in a maximum error of 23 mm, and an average error of 4.7 mm. This project supports NHTSA’s mission to reduce the number of deaths and injuries by studying how best to position chest deflection sensors to measure maximum deflection, which is used to estimate injury risk in crash tests. |
DOT HS 812 758 |
Feasibility of Vehicle-to-Vehicle Retrofit For Heavy VehiclesResearch on the feasibility of vehicle-to-vehicle (V2V) retrofits for heavy trucks in this report includes an estimate of the total number of class 3 to 8 buses and trucks in the U.S. fleet; engineering analysis of three installation configurations to retrofit nearly all of them, cost estimates for the V2V technologies and the installation across four volume estimates, and total cost estimates of retrofitting nearly the entire fleet using three scenarios based on different distributions of the three installation configurations. The lowest estimated cost per vehicle for the V2V technology and its installation was approximately $450 to $550, based on volume estimates of 10 million and 1 million, respectively. The total costs of retrofitting nearly the entire fleet of class 3 to 8 vehicles ranged from $5.5 billion to $8.5 billion. |
812 768 |
Detection Response Task Evaluation for Driver Distraction Measurement for Auditory-Vocal Tasks: Experiment 2This report supports development of driver distraction guidelines for auditory-vocal tasks. It describes driver distraction-related research performed to develop a method for measurement of the attentional demands of performing in-vehicle tasks using voice commands. An ISO standardized method called Detection Response Task (DRT) was evaluated for this purpose through an experiment conducted in a driving simulator in which participants performed voice-based in-vehicle tasks and a memory task while driving. Results showed that a DRT task implemented using a remote LED superimposed on the driving scene provided good results and a suitable task level associated with “too much” attentional demand was identified. |
DOT HS 812 800 |
Review of Simulation Frameworks and Standards Related to Driving ScenariosThis reviews simulation frameworks and standards for sharing scenarios and testing methods that could be used for safely evaluating SAE Level 4 and 5 automated driving system (ADS). A simulation framework or standard should describe the object level scenario data (the positions, orientations, and velocities of all the objects in the scene) along with roadway information so that the ADS can be tested in simulation. This open framework would serve as an interface for reading and writing scenario data, allowing for development of a sharable scenario database. Such a database could aid companies, researchers, and developers in the development of ADS and in safely evaluating system performance in simulation. |
DOT HS 812 815 |
Lower Beam Headlighting System Visibility Confirmation Test – Test Procedure AssessmentThis report summarizes assessment of a draft test procedure for confirming visibility performance of lower beam headlighting systems, determined by activating the lower beam headlamps on a production vehicle and measuring the amount of light cast onto the forward roadway over an array of specified locations. Performance levels are then calculated based on measured values for the specified locations. Three vehicles were subjected to three sets of the test. Results showed measured values for visibility and glare measurement locations to be consistent across the three test repetitions. Overall, the test procedure was effective in characterizing lower beam performance levels and provided valuable information on headlamp illuminance consistency and indicated good test repeatability. |
DOT HS 812 701 |
Functional Safety Assessment of a Generic Accelerator Control System with Electronic Throttle Control in Hybrid Electric Vehicles with Gasoline Internal Combustion EnginesThis report, one of a series of five similar reports, describes research assessing functional safety of accelerator control systems with electronic faults, such as errant electronic throttle control signals, following an industry process standard focusing specifically on errant signals in hybrid electric vehicles (HEVs) that combine an electric powertrain subsystem with a gasoline internal combustion engine. Three common HEV architectures are considered (series HEV, parallel HEV, and series-parallel HEV). This study follows the concept phase process in the ISO 26262 standard and applies a hazard and operability study, functional failure mode and effects analysis, and systems theoretic process analysis methods. In total, this study derives 8 vehicle-level safety goals and 260 safety requirements (an output of the ISO 26262 and STPA processes). This study uses the results of the analysis to identify potential opportunities to improve the risk assessment approach in the ISO 26262 standard. More than 1,500 pages of appendices are included. |
DOT HS 812 657 |
In-Vehicle Voice Control Interface Evaluation: Preliminary Driver Workload and Risk AnalysisThis project evaluated distraction and relative risk associated with using voice control systems (VCS) while driving. It explores potential empirical measures and uses a modeling approach for evaluating risk with these voice-based systems via three studies: Study 1 and Study 2 assess potential measures of the workload and demands on the driver imposed by voice-based and hybrid (audio plus visual) tasks. Participants interacted with a “Wizard of Oz” VCS while driving and a novel radio tuning benchmark task was used. Study 2 included on-road data collection and data collection with a driving simulator. Risk estimates and crash severity estimates developed using this technique varied considerably by VCS task and by driver. |
DOT HS 812 813 |
Biomechanical Response Manual: THOR 5th Percentile Female NHTSA Advanced Frontal Dummy, Revision 2The THOR-05F (Test device for Human Occupant Restraint fifth percentile female) anthropomorphic crash test dummy is being designed to provide improved biofidelity compared to the Hybrid III Fifth Female, particularly in evaluating head and neck injuries due to air bag deployment and interaction with restraints (e.g., abdominal response in submarining) along with an improved pelvis, knee-thigh-hip, and lower leg. This manual describes the anthropometry and biomechanical response targets recommended to assess the THOR-05F. The tests and procedures described here were derived primarily for use by dummy manufacturers during the pre-production design and development process. They are designed to produce results in the form of time-history signals so objective quantitative scoring can be performed. |
DOT HS 812 811 |
Battery State of Health and Stability Diagnostic Tool Set DevelopmentTraditional monitoring of electrochemical cells and batteries has been limited to voltage and temperature, but there are limits to how predictive voltage and temperature can be prior to thermal runaway events, which are often lagging indicators of battery failure. This work examines rapid electrochemical impedance spectroscopy (EIS) as a tool to determine cell or battery stability; to provide deeper understanding of how abused cells and batteries fail; and the technical basis of a tool that could be used to interrogate and even monitor cells for early signs of damage or failure. Idaho National Laboratories has developed a fast-impedance tool that uses off-the-shelf parts. This work evaluated that rapid impedance tool, including replicating the work performed with the traditional tool as well as collecting impedance data during dynamic conditions. |
DOT HS 812 810 |