Skip to main content

Vehicle Safety

Resources

The Office of Vehicle Safety Research and supports U.S. DOT’s and NHTSA’s safety goals by conducting research and safety testing of motor vehicles and motor vehicle equipment. 

NHTSA’s recently published vehicle safety reports are listed chronologically below.



139 Results
Title
 

Implementation of the Revised Safety Impact Methodology (SIM) Tool

The Safety Impact Methodology (SIM) software tool is a suite of simulation modules designed to assess the safety effectiveness of crash avoidance systems based on vehicle-to-vehicle (V2V) communications and/or vehicle-based sensors such as radar. The output can be combined with external data on exposure and occupant injury to support analysis of overall harm reduction. The SIM tool uses an incremental time-step approach to model linear motion, turning movements, driver reactions, and warnings/actions from the crash avoidance system. It implements pre-crash scenarios addressed by V2V-based forward crash warning, intersection movement assist, left turn assist, blind spot/lane change warning, do not pass warning, and emergency electronic brake light safety applications. It also has the capability to simulate other priority pre-crash scenarios and applicable safely applications, such as drifting into opposite direction travel lanes. This report details the mathematical and computational basis for the SIM tool, including assumptions, theory of operation, kinematic equations, and detailed specifications of pre-crash scenarios.

Traffic Jam Assist Draft Test Procedure Performability Validation

The report summarizes the use of three traffic jam assist (TJA) test scenarios (revisions to those specified in NHTSA’s April 2018 draft research TJA test procedure), discusses the results from testing one commercially available vehicle equipped with TJA, and provides general assessments of the scenarios used.

Electric Vehicle GTR No. 20 Test Development, Validation, and Assessment

This report provides draft test procedures for in-use requirements in the Global Technical Regulation (GTR) No. 20, “Electric vehicle safety,” including electrical shock protection, functional safety, and in-use safety of the high voltage propulsion battery in the electric vehicle.  The report also provides details of in-use testing on a 2019 Chevrolet Bolt.

Potential Alternative Methodology for Evaluating Flammability of Interior Automotive Materials

The objective of the research presented in the report is to improve the repeatability and reproducibility of evaluating the flammability of interior materials that are difficult to test according to Federal Motor Vehicle Safety Standard (FMVSS) No. 302, “Flammability of materials,” (e.g., rigid non-planar materials, parts smaller than the FMVSS 302 specimen size).  This report describes the work plan tasks and final results of this research program.  The work plan tasks included conducting literature review, characterizing vehicle fires by analyzing various sources of field data, conducting bench-scale and intermediate-scale testing of motor vehicle materials and equipment, and developing a test method and performance metrics with improved repeatability for evaluating material flammability.  Additionally, the chemical composition and smoke toxicity of the materials tested was also evaluated.

Opposing Traffic Safety Assist Draft Test Procedure Validation

The report summarizes the use of five preliminary opposing traffic safety assist (OTSA) test scenarios, discusses the results from testing one commercially available vehicle, a 2017 Mercedes-Benz E300, equipped with OTSA, and provides general assessments of the scenarios and test devices used during research.

An Approach for the Selection and Description of Elements Used to Define Driving Scenarios

This report reviews existing pre-crash scenario typologies and various proposed behavioral competencies in literature that may be relevant to automated driving systems (ADSs) and selects five example scenarios to facilitate exploration of elements that may be helpful in characterizing them. The selected scenarios were: rear-end scenario, lead vehicle lane change scenario, vulnerable road user scenario, crossing path scenario, and a merge scenario. From these five sample scenarios, scenario descriptions were created by first leveraging existing test track procedures when available and then modifying them such that they can be executed with ADSs. These scenario descriptions were broken down into five categories: initialization, environment, principal other vehicle, traffic, and subject vehicle status. For each one of these categories, the study targets identifying a preliminary list of elements necessary to describe the ground truth scenario information.

Occupant Dynamics During Crash Avoidance Maneuvers

A 12-participant test-track study in a sedan, a minivan, and a pickup assessed head excursions across vehicles using two abrupt braking events, two lane changes, and turn-and-brake maneuvers. Forward head excursion was slightly smaller in the passenger car than in the other two vehicles. No explanation for this finding was apparent; the vehicle kinematics were similar. A larger study with 90 participants was then conducted using a passenger sedan and an SUV with a range of age and body size assigned to blocks of initial conditions. Factors investigated were seat position, foot placement, seat back recline angle, retractor locking, vehicle differences, and effects of leaning inboard on the console armrest or leaning forward while reaching. All 90 experienced two braking events, a right-going lane change, a left-going lane change, and a turn-and-brake maneuver. Overall, results suggest a range of occupant head locations can be produced by abrupt vehicle maneuvers. More research is needed to assess the robustness of occupant protection systems to this wide range of postures.

Classification of Level 2 Vehicle Events Observed On Public Roads

This report summarizes the data collected while operating three vehicles equipped with SAE automation level 2 driver assistance systems. Using cameras, driver-annotated video was recorded to document the systems’ availability and noteworthy operation. Notable events were classified into three categories: events where the vehicle terminated its automation level 2 system operation and transferred full control back to the driver (Type I), driving situations where the system remained in operation but satisfied certain classification criteria (Type II), and driving situations where either the driver performed a manual override to disengage the system, or the system automatically reestablished lane position after an unintended departure had occurred (Type III).

Driver Expectations for System Control Errors, Engagement, and Crash Avoidance in Level 2 Driving Automation Systems

This project investigated how driver expectations about Level 2 ADAS systems affect driver engagement and performance. Many vehicles available to consumers offer some level of automated driving functionality, but the capabilities of these vehicles vary widely among makes and models. Drivers may have preconceived expectations about how these driver assistance systems function. This project tested 96 participants in low- and high-capability SAE Level 2 vehicles.  Participant training evaluated if driver was in agreement with the vehicles actual capabilities (high or low) or not (i.e., they were told the vehicle had highly functioning ADAS systems when it fact it only had low, or vice versa). Testing was conducted on both public roads and on the Virginia Smart Road test track.  While on the test track, participants were asked t completed non-driving tasks while driving, and mid-way through the driving session experienced a surprise event (crash imminent scenario).

FMVSS Considerations for Vehicles with Automated Driving Systems: Phase I, Volume 2

Included in this second volume are 18 Federal Motor Vehicle Safety Standards (FMVSS) research findings, including the performance requirements and test procedures, in terms of options regarding technical translations, based on potential regulatory barriers identified for compliance verification of innovative new vehicle designs that may appear in vehicles equipped with Automated Driving Systems (ADSs). This report builds on work in the Volume 1 report (Blanco et al., 2020); that report documented the framework used to evaluate the regulatory text and Office of Vehicle Safety Compliance test procedures with the goal of identifying possible options to address unnecessary/unintended regulatory barriers for the compliance verification of ADS-dedicated vehicles (ADS-DVs) that lack manually operated driving controls.